zoukankan      html  css  js  c++  java
  • UVA 1025 A Spy in the Metro 【DAG上DP/逆推/三维标记数组+二维状态数组】

    Secret agent Maria was sent to Algorithms City to carry out an especially dangerous mission. After
    several thrilling events we find her in the first station of Algorithms City Metro, examining the time
    table. The Algorithms City Metro consists of a single line with trains running both ways, so its time
    table is not complicated.
    Maria has an appointment with a local spy at the last station of Algorithms City Metro. Maria
    knows that a powerful organization is after her. She also knows that while waiting at a station, she is
    at great risk of being caught. To hide in a running train is much safer, so she decides to stay in running
    trains as much as possible, even if this means traveling backward and forward. Maria needs to know
    a schedule with minimal waiting time at the stations that gets her to the last station in time for her
    appointment. You must write a program that finds the total waiting time in a best schedule for Maria.
    The Algorithms City Metro system has N stations, consecutively numbered from 1 to N. Trains
    move in both directions: from the first station to the last station and from the last station back to the
    first station. The time required for a train to travel between two consecutive stations is fixed since all
    trains move at the same speed. Trains make a very short stop at each station, which you can ignore
    for simplicity. Since she is a very fast agent, Maria can always change trains at a station even if the
    trains involved stop in that station at the same time.
    Input
    The input file contains several test cases. Each test case consists of seven lines with information as
    follows.
    Line 1. The integer N (2 ≤ N ≤ 50), which is the number of stations.
    Line 2. The integer T (0 ≤ T ≤ 200), which is the time of the appointment.
    Line 3. N − 1 integers: t1, t2, . . . , tN−1 (1 ≤ ti ≤ 20), representing the travel times for the trains
    between two consecutive stations: t1 represents the travel time between the first two stations, t2
    the time between the second and the third station, and so on.
    Line 4. The integer M1 (1 ≤ M1 ≤ 50), representing the number of trains departing from the first
    station.
    Line 5. M1 integers: d1, d2, . . . , dM1 (0 ≤ di ≤ 250 and di < di+1), representing the times at which
    trains depart from the first station.
    Line 6. The integer M2 (1 ≤ M2 ≤ 50), representing the number of trains departing from the N-th
    station.
    Line 7. M2 integers: e1, e2, . . . , eM2 (0 ≤ ei ≤ 250 and ei < ei+1) representing the times at which
    trains depart from the N-th station.
    The last case is followed by a line containing a single zero.
    Output
    For each test case, print a line containing the case number (starting with 1) and an integer representing
    the total waiting time in the stations for a best schedule, or the word ‘impossible’ in case Maria is
    unable to make the appointment. Use the format of the sample output.
    Sample Input
    4
    55
    5 10 15
    4
    0 5 10 20
    4
    0 5 10 15
    4
    18
    1 2 3
    5
    0 3 6 10 12
    6
    0 3 5 7 12 15
    2
    30
    20
    1
    20
    7
    1 3 5 7 11 13 17
    0
    Sample Output
    Case Number 1: 5
    Case Number 2: 0
    Case Number 3: impossible
    
    #include<bits/stdc++.h>
    
    using namespace std;
    const int INF = 1e6;
    int n,m,T;
    int t[60];
    int d[260][60];
    int ok[260][60][2];
    int main()
    {
        int kase=0;
        while(cin>>n,n)
        {
            cin>>T;
            for(int i=1;i<n;i++) cin>>t[i];
    
            int M1;
            cin>>M1;
            memset(ok,0,sizeof(ok));
            for(int i=1;i<=M1;i++)
            {
                int Tm,j=1;
                cin>>Tm;
                while(Tm<=T && j<n)
                {
                    ok[Tm][j][0]=1;
                    Tm+=t[j++];
                }
            }
            int M2;
            cin>>M2;
            for(int i=1;i<=M2;i++)
            {
                int Tm,j=n;
                cin>>Tm;
                while(Tm<=T && j>1)
                {
                    ok[Tm][j][1]=1;
                    Tm+=t[--j];
                }
            }
    
            for(int i=1;i<n;i++) d[T][i]=INF;
            d[T][n]=0;
    
            for(int i=T-1; i>=0; i--)
            {
                for(int j=1; j<=n; j++)
                {
                    d[i][j] = d[i+1][j] + 1;
                    if(j<n && ok[i][j][0] && i+t[j]<=T)
                        d[i][j]=min(d[i][j],d[i+t[j]][j+1]);
                    if(j>1 && ok[i][j][1] && i+t[j-1]<=T)
                        d[i][j]=min(d[i][j],d[i+t[j-1]][j-1]);
                }
            }
    
            printf("Case Number %d: ", ++kase);
            if(d[0][1] > INF) printf("impossible
    ");
            else printf("%d
    ", d[0][1]);
        }
    }
    
  • 相关阅读:
    css3 font-face
    快速理解RequireJs
    移动HTML5前端性能优化指南
    HTML中head头结构
    JS面向对象基础讲解(工厂模式、构造函数模式、原型模式、混合模式、动态原型模)
    巧妙使用CSS媒体查询(Media Queries)和JavaScript判断浏览器设备类型的好方法
    关于浏览器内核与javascript引擎的一些小知识
    SVG 与 Canvas:如何选择
    NodeJS、NPM安装配置步骤(windows版本)
    ie10 css hack 条件注释等兼容方式整理
  • 原文地址:https://www.cnblogs.com/Roni-i/p/9011779.html
Copyright © 2011-2022 走看看