Description
Fibonacci numbers are well-known as follow:
Now given an integer N, please find out whether N can be represented as the sum of several Fibonacci numbers in such a way that the sum does not include any two consecutive Fibonacci numbers.
Input
Multiple test cases, the first line is an integer T (T<=10000), indicating the number of test cases.
Each test case is a line with an integer N (1<=N<=1000000000).
Output
One line per case. If the answer don’t exist, output “-1” (without quotes). Otherwise, your answer should be formatted as “N=f1+f2+…+fn”. N indicates the given number and f1, f2, … , fn indicating the Fibonacci numbers in ascending order. If there are multiple ways, you can output any of them.
Sample Input
4 5 6 7 100
Sample Output
5=5 6=1+5 7=2+5 100=3+8+89
Source
Unknown
#include <cstdio> #include <iostream> #include <cmath> #include <string> #include <cstring> #include <algorithm> #include <queue> using namespace std; #define ll long long const int inf = 0x3f3f3f3f; const int maxn = 1e6; ll number[10000+8], sum[10000+8]; int t; ll n; void init() { for(int i = 1; i<46; i++)//虽然n<=1000000000,看起来数据很大,实际上在斐波那契数列里面,下标最大也不过是45而已 { if(i == 1)number[i] = 1; else if(i == 2)number[i] = 2; else number[i] = number[i-1]+number[i-2]; } } int main() { while(~scanf("%d", &t)) { while(t--) { init(); int miao = 0; scanf("%d", &n); int ying = n, flag = 0; for(int i = 45; i>0; i--) { if(ying>=number[i]) { sum[miao++] = number[i]; ying -= number[i]; if(ying <= 0)break; } } printf("%d=", n); for(int i = miao-1; i>=0; i--) { if(flag)printf("+"); flag = 1; printf("%d", sum[i]); } printf(" "); } } return 0; }