zoukankan      html  css  js  c++  java
  • SDNU 1136.Balloons(BFS)

    Description

    Both Saya and Kudo like balloons. One day, they heard that in the central park, there will be thousands of people fly balloons to pattern a big image.
    They were very interested about this event, and also curious about the image.
    Since there are too many balloons, it is very hard for them to compute anything they need. Can you help them?
    You can assume that the image is an N*N matrix, while each element can be either balloons or blank.
    Suppose element A and element B are both balloons. They are connected if:
    i) They are adjacent;
    ii) There is a list of element C1, C2, … , Cn, while A and C1 are connected, C1 and C2 are connected …Cn and B are connected.
    And a connected block means that every pair of elements in the block is connected, while any element in the block is not connected with any element out of the block.
    To Saya, element A (Xa,Ya) and B (Xb,Yb) is adjacent if |Xa-Xb|+|Ya-Yb|≤1
    But to Kudo, element A (Xa,Ya) and element B (Xb,Yb) is adjacent if |Xa-Xb|≤1 and |Ya-Yb|≤1
    They want to know that there’s how many connected blocks with there own definition of adjacent?

    Input

    The input consists of several test cases.
    The first line of input in each test case contains one integer N (0<n≤100), which="" represents="" of="" the="" matrix.<br="" size=""> Each of the next N lines contains a string whose length is N, represents the elements of the matrix. The string only consists of 0 and 1, while 0 represents a block and 1represents balloons.
    The last case is followed by a line containing one zero.

    Output

    For each case, print the case number (1, 2 …) and the connected block’s numbers with Saya and Kudo’s definition. Your output format should imitate the sample output. Print a blank line after each test case.

    Sample Input

    5
    11001
    00100
    11111
    11010
    10010
    
    0
    

    Sample Output

    Case 1: 3 2

    Source

    #include<bits/stdc++.h>
    using namespace std;
    
    #define ll long long
    #define eps 1e-9
    
    const int inf = 0x3f3f3f3f;
    const int mod = 1e9+7;
    const int maxn = 100000 + 8;
    
    int mov[8][2] = {0,1, 1,0, 0,-1, -1,0, 1,1, 1,-1, -1,1, -1,-1};
    
    int n;
    string s[100000 + 8], ss[100000 + 8];
    ll sums, sumk;
    
    struct node
    {
        int x, y;
    };
    
    void bfs1(int a, int b)
    {
        queue<node>q;
        node miao;
        miao.x = a;
        miao.y = b;
        q.push(miao);
        while(!q.empty())
        {
            node f = q.front();
            q.pop();
            node next;
            for(int i = 0; i < 4; i++)
            {
                next.x = f.x + mov[i][0];
                next.y = f.y + mov[i][1];
                if(next.x >= 0 && next.y >= 0 && next.x < n && next.y < n && s[next.x][next.y] == '1')
                {
                    s[next.x][next.y] = '0';
                    q.push(next);
                }
            }
        }
    }
    
    void bfs2(int a, int b)
    {
        queue<node>q;
        node miao;
        miao.x = a;
        miao.y = b;
        q.push(miao);
        while(!q.empty())
        {
            node f = q.front();
            q.pop();
            node next;
            for(int i = 0; i < 8; i++)
            {
                next.x = f.x + mov[i][0];
                next.y = f.y + mov[i][1];
                if(next.x >= 0 && next.y >= 0 && next.x < n && next.y < n && ss[next.x][next.y] == '1')
                {
                    ss[next.x][next.y] = '0';
                    q.push(next);
                }
            }
        }
    }
    
    int main()
    {
        std::ios::sync_with_stdio(0);
        cin.tie(0);
        cout.tie(0);
        int num = 0;
        while(cin>>n)
        {
            if(n == 0)break;
            for(int i = 0; i < n; i++)
            {
                cin>>s[i];
                ss[i] = s[i];
            }
            sums = 0;
            sumk = 0;
            for(int i = 0; i < n; i++)
            {
                for(int j = 0; j < n; j++)
                {
                    if(s[i][j] == '1')
                    {
                        s[i][j] = '0';
                        bfs1(i, j);
                        sums++;
                    }
                }
            }
            for(int i = 0; i < n; i++)
            {
                for(int j = 0; j < n; j++)
                {
                    if(ss[i][j] == '1')
                    {
                        ss[i][j] = '0';
                        bfs2(i, j);
                        sumk++;
                    }
                }
            }
            printf("Case %d: %lld %lld
    
    ", ++num, sums, sumk);
        }
        return 0;
    }
  • 相关阅读:
    机器学习算法原理与实践-决策树(文章迁移)
    机器学习算法原理与实践-正规方程、梯度下降(文章迁移)
    Kubernetes-PV和PVC的原理和实践
    算法系列之——希尔排序算法
    算法系列之——插入算法
    浏览器加载解析渲染网页原理
    Express session应用与原理源码解析
    Express4.x之中间件与路由详解及源码分析
    Express4.x之API:express
    webstorm不能提示node代码:coding assistance for node.js不能enable解决方案
  • 原文地址:https://www.cnblogs.com/RootVount/p/11409285.html
Copyright © 2011-2022 走看看