达哥送分给我我都不要,感觉自己挺牛批。
$type=0:$
跟visit那题类似,枚举横向移动的步数直接推公式:
$ans=sum C_n^i imes C_i^{frac{i}{2}} imes C_{n-i}^{frac{n-i}{2}},i\% 2=0$
$type=1:$
因为不能触碰负半轴,所以可以把右移看成+1,左移看成-1,转化为前缀和大于等于0的问题
于是直接Catalan数就好了。注意是第$frac {n}{2}$项的Catalan。
$Catalan_n=C_{2n}^{n}-C_{2n}^{n-1}$
$type=2:$
观察到数据范围较小,考虑dp。
设$f[i]$为走i步回到原点的方案数,通过枚举第一次回到原点的步数j进行转移。
显然j只能为偶数。
$f[i]=sum f[i-j]*Catalan(frac{j}{2}-1)$
$type=3:$
还是枚举横向走的步数,结合Catalan数求解。
$ans=sum C_n^i*Catalan(frac{i}{2})*Catalan(frac{n-i}{2})$
#include<cstdio> #include<iostream> #include<cstring> using namespace std; typedef long long ll; const ll mod=1000000007; const int N=100005; int n,op; ll fac[N<<1],ans,dp[N<<1]; ll qpow(ll a,ll b) { ll res=1;//a%=mod; while(b) { if(b&1)res=res*a%mod; a=a*a%mod; b>>=1; } return res; } ll ini() { fac[0]=1; for(int i=1;i<=(N-5)<<1;i++) fac[i]=1LL*i*fac[i-1]%mod; } ll C(ll x,ll y) { if(y>x)return 0; return fac[x]*qpow(fac[y],mod-2)%mod*qpow(fac[x-y],mod-2)%mod; } ll lucas(ll x,ll y) { if(!y)return 1; return C(x%mod,y%mod)*lucas(x/mod,y/mod)%mod; } ll Catalan(ll x) { return (lucas(x*2,x)-lucas(x*2,x-1)+mod)%mod; } void qj1() { //cout<<2*n<<endl; //cout<<C(2*n,n)<<endl; ans=Catalan(1LL*n/2); cout<<ans<<endl; } void qj0() { for(int i=0;i<=n;i++) { if(i%2)continue; ans+=lucas(1LL*n,1LL*i)%mod*lucas(1LL*i,1LL*i/2)%mod*lucas(1LL*(n-i),1LL*(n-i)/2)%mod,ans%=mod; } cout<<ans<<endl; } void qj3() { for(int i=0;i<=n;i++) { if(i%2)continue; ans+=lucas(1LL*n,1LL*i)*Catalan(1LL*i/2)%mod*Catalan(1LL*(n-i)/2)%mod,ans%=mod; } cout<<ans<<endl; } void qj2() { dp[0]=1; for(int i=2;i<=n;i+=2) for(int j=2;j<=i;j+=2) dp[i]+=dp[i-j]*4%mod*Catalan(1LL*j/2-1LL)%mod,dp[i]%=mod; cout<<dp[n]<<endl; } int main() { scanf("%d%d",&n,&op); ini(); if(op==1)qj1(); else if(op==0)qj0(); else if(op==3)qj3(); else qj2(); return 0; }