zoukankan      html  css  js  c++  java
  • [CSP-S模拟测试45]题解

    开局一行$srand$,得分全靠随机化。

    A.kill

    发现两个并不显然的性质:

    1.选中的人和怪物一定是按顺序的。第一个人打所有被选中怪物的第一只,第二个人打第二只,$etc$。

    2.最优方案打的怪物一定是一段连续的区间。(因为过去再反方向回来到任务点一定不优)

    所以直接枚举第一个打哪只怪即可。

    #include<bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    int read()
    {
        int x=0,f=1;char ch=getchar();
        while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
        while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
        return x*f;
    }
    const int N=5005;
    int p[N],q[N],n,m,s,vis[N];
    ll ans=1e15;
    int abss(int x)
    {
        return x>0?x:-x;
    }
    ll cost(int i,int j)
    {
        return 1LL*(1LL*abss(p[i]-q[j])+1LL*abss(s-q[j]));
    }
    int main()
    {
        n=read();m=read();s=read();
        for(int i=1;i<=n;i++)
            p[i]=read();
        for(int i=1;i<=m;i++)
            q[i]=read();
        sort(p+1,p+n+1);sort(q+1,q+m+1);
        for(int i=1;i<=m;i++)
        {
            ll tmp=0;
            for(int j=1;j<=n;j++)
                tmp=max(tmp,cost(j,i+j-1));
            ans=min(ans,tmp);
        }
        cout<<ans<<endl;
        return 0;
    }
    

    B.beauty

    直接考虑点对显然没有前途(当然可以像我一样结合随机化乱搞得到50分),那么贪心地考虑每条边

    令$size[x]$表示$x$的子树里关键点的个数,尽量让子树里和子树外的关键点配对

    所以$x$到它父亲的这条边对答案作出的贡献就是$min(size[x],2*K-size[x])$。其实就是看最多能凑子树内外的多少个点对。

    #include<bits/stdc++.h>
    using namespace std;
    const int N=1e5+5,K=60005;
    typedef long long ll;
    int read()
    {
        int x=0,f=1;char ch=getchar();
        while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
        while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
        return x*f;
    }
    int n,k,op,node[K];
    int to[N<<1],head[N],nxt[N<<1],tot,size[N];
    bool key[N];
    ll ans;
    void add(int x,int y)
    {
        to[++tot]=y;
        nxt[tot]=head[x];
        head[x]=tot;
    }
    void dfs(int x,int f)
    {
        size[x]+=key[x];
        for(int i=head[x];i;i=nxt[i])
        {
            int y=to[i];
            if(y==f)continue;
            dfs(y,x);
            size[x]+=size[y];
        }
        ans+=min(size[x],2*k-size[x]);
    }
    
    int main()
    {
        n=read();k=read();op=read();
        for(int i=1;i<=(k<<1);i++)
            node[i]=read(),key[node[i]]=1;
        for(int i=1;i<n;i++)
        {
            int x=read(),y=read();
            add(x,y);add(y,x);
        }
        dfs(1,0);
        cout<<ans<<endl;
        return 0;
    }
    

    C.weight

    先放官方题解:

    首先图的某一棵最小生成树求出来,对于树边和非树边分类讨论。
    对于一条非树边,我们至少要将它的权值调整到树上这两个端点对应路径边权最大值 -1 才可以,否则我们一定可以
    不选这条边。显然,我们调整到这么大也足够了。
    对于一条树边,我们关心的显然是两个端点对应的简单路径经过这条树边的那些边,我们最大的可能选择是那些边
    中权值最小的边的权值 -1, (否则我们可以选那条最小边而不选这条树边),而我们如果将这条树边的边权调整成那
    个值,它也一定还会在最小生成树中。
    所以这道题我们可以写一个树链剖分来完成我们上面的各种操作。

    然后……也就没什么了。边权化点权,不断插入非树边用树剖动态维护,树边和非树边分别统计答案。

    调到吐血……

    #include<cstdio>
    #include<iostream>
    #include<cstring>
    #include<algorithm>
    using namespace std;
    int read()
    {
        int x=0,f=1;char ch=getchar();
        while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
        while(isdigit(ch))x=x*10+ch-'0',ch=getchar();
        return x*f;
    }
    const int N=7e4+5,M=1e5+5;
    int n,m,op,maxx;
    struct edge
    {
        int s,t,w,id;
        friend bool operator < (edge x,edge y)
        {
            return x.w<y.w;
        }
    }e[M];
    int to[M<<1],head[N],nxt[M<<1],len[M<<1],tot,id[M<<1],chose[M];
    int ans[M];
    void add(int x,int y,int z,int i)
    {
        to[++tot]=y;
        nxt[tot]=head[x];
        head[x]=tot;
        len[tot]=z;
        id[tot]=i;
    }
    int fa[N];
    int findf(int x)
    {
        if(x==fa[x])return x;
        return fa[x]=findf(fa[x]);
    }
    void kruskal()
    {
        sort(e+1,e+m+1);
        for(int i=1;i<=n;i++)
            fa[i]=i;
        int t=0;
        for(int i=1;i<=m;i++)
        {
            int fx=findf(e[i].s),fy=findf(e[i].t);
            if(fx!=fy)
            {
                fa[fx]=fy;
                t++;chose[e[i].id]=1;
                add(e[i].s,e[i].t,e[i].w,e[i].id);
                add(e[i].t,e[i].s,e[i].w,e[i].id);
            }
            if(t==n-1)break;
        }
    }
    namespace tre
    {
        int size[N],son[N],top[N],seg[N],rev[N],dep[N],fa[N],num[N],vl[N],idn[N];
        void dfs1(int x,int f)
        {
            size[x]=1;
            fa[x]=f;
            dep[x]=dep[f]+1;
            for(int i=head[x];i;i=nxt[i])
            {
                int y=to[i];
                if(y==f)continue;
                vl[y]=len[i];idn[y]=id[i];
                dfs1(y,x);
                size[x]+=size[y];
                if(size[y]>size[son[x]])son[x]=y;
            }
        }
        void dfs2(int x,int y)
        {
            top[x]=y;seg[x]=++seg[0];rev[seg[0]]=x;
            if(son[x])dfs2(son[x],y);
            for(int i=head[x];i;i=nxt[i])
            {
                int y=to[i];
                if(y==fa[x]||y==son[x])continue;
                dfs2(y,y);
            }
        }
        int lz[N<<2],val1[N<<2],val2[N<<2];
    #define ls(k) (k)<<1
    #define rs(k) (k)<<1|1
        void build(int k,int l,int r)
        {
            lz[k]=val2[k]=maxx+1;
            if(l==r)
            {
                val1[k]=vl[rev[l]];
                return ;
            }
            int mid=l+r>>1;
            build(ls(k),l,mid);
            build(rs(k),mid+1,r);
            val1[k]=max(val1[ls(k)],val1[rs(k)]);
        }
        void down(int k)
        {
            if(lz[k]==maxx+1)return ;
            val2[ls(k)]=min(val2[ls(k)],lz[k]);
            val2[rs(k)]=min(val2[rs(k)],lz[k]);
            lz[ls(k)]=min(lz[ls(k)],lz[k]);
            lz[rs(k)]=min(lz[rs(k)],lz[k]);
            lz[k]=maxx+1;
        }
        int query(int k,int l,int r,int L,int R)
        {
            if(L<=l&&R>=r)return val1[k];
            int mid=l+r>>1,res=0;
            if(L<=mid)res=max(res,query(ls(k),l,mid,L,R));
            if(R>mid)res=max(res,query(rs(k),mid+1,r,L,R));
            return res;
        }
        int query(int x,int y)
        {
            int fx=top[x],fy=top[y],res=0;
            while(fx!=fy)
            {
                if(dep[fx]<dep[fy])swap(fx,fy),swap(x,y);
                res=max(res,query(1,1,seg[0],seg[fx],seg[x]));
                x=fa[fx],fx=top[x];
            }
            if(dep[x]>dep[y])swap(x,y);
            if(seg[x]<seg[y])res=max(res,query(1,1,seg[0],seg[x]+1,seg[y]));
            return res;
        }
        void update(int k,int l,int r,int L,int R,int val)
        {
            if(L<=l&&R>=r)
            {
                val2[k]=min(val2[k],val);
                lz[k]=min(lz[k],val);
                return ;
            }
            down(k);
            int mid=l+r>>1;
            if(L<=mid)update(ls(k),l,mid,L,R,val);
            if(R>mid)update(rs(k),mid+1,r,L,R,val);
            val2[k]=min(val2[ls(k)],val2[rs(k)]);
        }
        void update(int x,int y,int val)
        {
            int fx=top[x],fy=top[y];
            while(fx!=fy)
            {
                if(dep[fx]<dep[fy])swap(fx,fy),swap(x,y);
                update(1,1,seg[0],seg[fx],seg[x],val);
                x=fa[fx],fx=top[x];
            }
            if(dep[x]>dep[y])swap(x,y);
            if(seg[x]<seg[y])update(1,1,seg[0],seg[x]+1,seg[y],val);
        }
        void get(int k,int l,int r)
        {
            if(l==r)
            {
                ans[idn[rev[l]]]=(val2[k]==maxx+1?-1:val2[k]-1);
                return ;
            }
            down(k);
            int mid=l+r>>1;
            get(ls(k),l,mid);
            get(rs(k),mid+1,r);
        }
        void Main()
        {
            dfs1(1,0);dfs2(1,1);
            build(1,1,seg[0]);
            for(int i=1;i<=m;i++)
            {
                if(chose[e[i].id])continue;
                ans[e[i].id]=query(e[i].s,e[i].t)-1;
                update(e[i].s,e[i].t,e[i].w);
            }
            get(1,1,seg[0]);
        }
    }
    int main()
    {
        n=read();m=read();op=read();
        for(int i=1;i<=m;i++)
        {
            e[i].s=read(),e[i].t=read(),e[i].w=read();
            e[i].id=i;maxx=max(maxx,e[i].w);
        }
        kruskal();
        tre::Main();
        for(int i=1;i<=m;i++)
            printf("%d ",ans[i]);
        putchar('
    ');
        return 0;
    }
    
  • 相关阅读:
    C++ 对象间通信框架 V2.0 ××××××× 之(三)
    C++ 对象间通信框架 V2.0 ××××××× 之(二)
    C++ 对象间通信框架 V2.0 ××××××× 之一
    C++ 对象间通讯机制 框架实现
    websocket 传输数据帧打包 (client端)
    SetwindowText 之线程阻塞
    oracle虚拟索引的创建
    函数索引
    关于is null和is not null不能利用索引的测试
    索引的选择性
  • 原文地址:https://www.cnblogs.com/Rorschach-XR/p/11556216.html
Copyright © 2011-2022 走看看