Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
- Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
- The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4}, A solution set is: (-1, 0, 1) (-1, -1, 2)
思考:仿照在2Sum,增加一个循环遍历数组,复杂度O(n2)。一直纠结于是否存在O(nlogn)的解法?最初思路是在2Sum的基础上,二分搜索(0-num[i]-num[j])。未能解决搜索成功后i,j的变化。
class Solution { public: vector<vector<int> > threeSum(vector<int> &num) { vector<vector<int> > res; vector<int> ans; sort(num.begin(),num.end()); int len=num.size(); for(int i=0;i<len-2;i++) { if(i&&num[i]==num[i-1]) continue; int left=i+1; int right=len-1; while(left<right) { if(left>i+1&&num[left]==num[left-1]) { left++; continue; } if(right<len-1&&num[right]==num[right+1]) { right--; continue; } if(num[i]+num[left]+num[right]==0) { ans.clear(); ans.push_back(num[i]); ans.push_back(num[left]); ans.push_back(num[right]); res.push_back(ans); left++; right--; } else if(num[i]+num[left]+num[right]>0) right--; else left++; } } return res; } };