Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
confused what "{1,#,2,3}"
means? > read more on how binary tree is serialized on OJ.
OJ's Binary Tree Serialization:
The serialization of a binary tree follows a level order traversal, where '#' signifies a path terminator where no node exists below.
Here's an example:
1 / 2 3 / 4 5The above binary tree is serialized as
"{1,2,3,#,#,4,#,#,5}"
.思考:记录parent有点繁,记录上下界。
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: bool DFS(TreeNode *root,int min,int max) { if(root) { if(min<root->val&&root->val<max) { return DFS(root->left,min,root->val)&&DFS(root->right,root->val,max); } else return false; } else return true; } bool isValidBST(TreeNode *root) { return DFS(root,INT_MIN,INT_MAX); } };