“人生苦短,我用python”
这几日折腾搭建了python平台,主要安装了numpy,scipy,matplotlib,scikit-learn这几个包。
先来一个小程序练练手。
from numpy import *
import sklearn
import random
from sklearn import linear_model
# load dataset
infile = "C:\Users\Administrator\Desktop\1.txt"
fr = open(infile)
lines = fr.readlines()
numberOfLines = len(lines)
src = []
result = []
for line in lines:
listFromLine = line.strip().split(' ')
# map all elements to float
floatLine = map(float, listFromLine)
src.append(floatLine)
src = array(src)
row, col = src.shape
for loop in range(0, 10):
# shuffle the sample
random.shuffle(src)
trainFeature = src[0 : row / 2, 0 : -1]
trainLabel = src[0 : row / 2, -1]
testFeature = src[row / 2 : row, 0 : -1]
testLabel = src[row / 2 : row, -1]
testNumber = len(testLabel)
# train
clf = linear_model.LogisticRegression()
clf.fit(trainFeature, trainLabel)
# test
Y = clf.predict(testFeature)
# predict answer
right = 0
for i in range(0, testNumber):
if Y[i] == testLabel[i]:
right = right + 1
result.append(float(right) / float(testNumber) * 100)
print sum(result) / len(result)
整理的一些python学习资料
一.python入门
1.Python教程,廖雪峰
2.Python初学者,GithHub上的PythonShare
二.爬虫
2.零基础自学用Python3开发网络爬虫(一)(2,3,4)
三.机器学习