“人生苦短,我用python”
这几日折腾搭建了python平台,主要安装了numpy,scipy,matplotlib,scikit-learn这几个包。
先来一个小程序练练手。
from numpy import * import sklearn import random from sklearn import linear_model # load dataset infile = "C:\Users\Administrator\Desktop\1.txt" fr = open(infile) lines = fr.readlines() numberOfLines = len(lines) src = [] result = [] for line in lines: listFromLine = line.strip().split(' ') # map all elements to float floatLine = map(float, listFromLine) src.append(floatLine) src = array(src) row, col = src.shape for loop in range(0, 10): # shuffle the sample random.shuffle(src) trainFeature = src[0 : row / 2, 0 : -1] trainLabel = src[0 : row / 2, -1] testFeature = src[row / 2 : row, 0 : -1] testLabel = src[row / 2 : row, -1] testNumber = len(testLabel) # train clf = linear_model.LogisticRegression() clf.fit(trainFeature, trainLabel) # test Y = clf.predict(testFeature) # predict answer right = 0 for i in range(0, testNumber): if Y[i] == testLabel[i]: right = right + 1 result.append(float(right) / float(testNumber) * 100) print sum(result) / len(result)
整理的一些python学习资料
一.python入门
1.Python教程,廖雪峰
2.Python初学者,GithHub上的PythonShare
二.爬虫
2.零基础自学用Python3开发网络爬虫(一)(2,3,4)
三.机器学习