zoukankan      html  css  js  c++  java
  • 应用深度学习EEGNet来处理脑电信号

    本分享为脑机学习者Rose整理发表于公众号:脑机接口社区(微信号:Brain_Computer).QQ交流群:903290195

    EEGNet论文

    EEGNet简介

    脑机接口(BCI)使用神经活动作为控制信号,实现与计算机的直接通信。这种神经信号通常是从各种研究透彻的脑电图(EEG)信号中挑选出来的。卷积神经网络(CNN)主要用来自动特征提取和分类,其在计算机视觉和语音识别领域中的使用已经很广泛。CNN已成功应用于基于EEG的BCI;但是,CNN主要应用于单个BCI范式,在其他范式中的使用比较少,论文作者提出是否可以设计一个CNN架构来准确分类来自不同BCI范式的EEG信号,同时尽可能地紧凑(定义为模型中的参数数量)。该论文介绍了EEGNet,这是一种用于基于EEG的BCI的紧凑型卷积神经网络。论文介绍了使用深度和可分离卷积来构建特定于EEG的模型,该模型封装了脑机接口中常见的EEG特征提取概念。论文通过四种BCI范式(P300视觉诱发电位、错误相关负性反应(ERN)、运动相关皮层电位(MRCP)和感觉运动节律(SMR)),将EEGNet在主体内和跨主体分类方面与目前最先进的方法进行了比较。结果显示,在训练数据有限的情况下,EEGNet比参考算法具有更强的泛化能力和更高的性能。同时论文也证明了EEGNet可以有效地推广到ERP和基于振荡的BCI。
    网络结构图如下:

    实验结果如下图,P300数据集的所有CNN模型之间的差异非常小,但是MRCP数据集却存在显著的差异,两个EEGNet模型的性能都优于所有其他模型。对于ERN数据集来说,两个EEGNet模型的性能都优于其他所有模型(p < 0.05)。

    如下图每个模型的P300,ERN和MRCP数据集的分类性能平均为30倍。对于P300和MRCP数据集,DeepConvNet和EEGNet模型之间的差异很小,两个模型的性能均优于ShallowConvNet。对于ERN数据集,参考算法(xDAWN + RG)明显优于所有其他模型。

    下图是对EEGNet-4,1模型配置获得的特征进行可视化,
    (A)每个空间过滤器的空间拓扑。
    (B)每个滤波器的目标试验和非目标试验之间的平均小波时频差。

    下图中第一排是使用DeepLIFT针对MRCP数据集的三个不同测试试验,对使用cross-subject训练的EEGNet-8,2模型进行的单次试验脑电特征相关性:
    (A)高可信度,正确预测左手运动;
    (B)高可信度,正确预测右手运动;
    (C)低可信度,错误预测左手运动。
    标题包括真实的类别标签和该标签的预测概率。

    第二排是在两个时间点的相关性空间分布图:按钮按下后大约50毫秒和150毫秒。与预期的一样,高可信度试验显示出分别对应左(A)和右(B)按钮对应的对侧运动皮层的正确相关性。对于低置信度的试验,可以看到相关性更加混杂且分布广泛,而运动皮质没有明确的空间定位。

    EEGNet代码实现

    作者提供的代码用的是旧版本的Pytorch,所以有一些错误。Rose小哥基于作者提供的代码在Pytorch 1.3.1(only cpu)版本下修改,经测试,在Rose小哥环境下可以运行[不排除在其他环境可能会存在不兼容的问题]

    # 导入工具包
    import numpy as np
    from sklearn.metrics import roc_auc_score, precision_score, recall_score, accuracy_score
    import torch
    import torch.nn as nn
    import torch.optim as optim
    from torch.autograd import Variable
    import torch.nn.functional as F
    import torch.optim as optim
    

    EEGNet网络模型参数如下:

    定义网络模型:

    class EEGNet(nn.Module):
        def __init__(self):
            super(EEGNet, self).__init__()
            self.T = 120
    
            # Layer 1
            self.conv1 = nn.Conv2d(1, 16, (1, 64), padding = 0)
            self.batchnorm1 = nn.BatchNorm2d(16, False)
    
            # Layer 2
            self.padding1 = nn.ZeroPad2d((16, 17, 0, 1))
            self.conv2 = nn.Conv2d(1, 4, (2, 32))
            self.batchnorm2 = nn.BatchNorm2d(4, False)
            self.pooling2 = nn.MaxPool2d(2, 4)
    
            # Layer 3
            self.padding2 = nn.ZeroPad2d((2, 1, 4, 3))
            self.conv3 = nn.Conv2d(4, 4, (8, 4))
            self.batchnorm3 = nn.BatchNorm2d(4, False)
            self.pooling3 = nn.MaxPool2d((2, 4))
    
            # 全连接层
            # 此维度将取决于数据中每个样本的时间戳数。
            # I have 120 timepoints. 
            self.fc1 = nn.Linear(4*2*7, 1)
    
    
        def forward(self, x):
            # Layer 1
            x = F.elu(self.conv1(x))
            x = self.batchnorm1(x)
            x = F.dropout(x, 0.25)
            x = x.permute(0, 3, 1, 2)
    
            # Layer 2
            x = self.padding1(x)
            x = F.elu(self.conv2(x))
            x = self.batchnorm2(x)
            x = F.dropout(x, 0.25)
            x = self.pooling2(x)
    
            # Layer 3
            x = self.padding2(x)
            x = F.elu(self.conv3(x))
            x = self.batchnorm3(x)
            x = F.dropout(x, 0.25)
            x = self.pooling3(x)
    
            # 全连接层
            x = x.view(-1, 4*2*7)
            x = F.sigmoid(self.fc1(x))
            return x
    

    定义评估指标:
    acc:准确率
    auc:AUC 即 ROC 曲线对应的面积
    recall:召回率
    precision:精确率
    fmeasure:F值

    def evaluate(model, X, Y, params = ["acc"]):
        results = []
        batch_size = 100
    
        predicted = []
    
        for i in range(len(X)//batch_size):
            s = i*batch_size
            e = i*batch_size+batch_size
    
            inputs = Variable(torch.from_numpy(X[s:e]))
            pred = model(inputs)
    
            predicted.append(pred.data.cpu().numpy())
    
        inputs = Variable(torch.from_numpy(X))
        predicted = model(inputs)
        predicted = predicted.data.cpu().numpy()
        """
        设置评估指标:
        acc:准确率
        auc:AUC 即 ROC 曲线对应的面积
        recall:召回率
        precision:精确率
        fmeasure:F值
        """
        for param in params:
            if param == 'acc':
                results.append(accuracy_score(Y, np.round(predicted)))
            if param == "auc":
                results.append(roc_auc_score(Y, predicted))
            if param == "recall":
                results.append(recall_score(Y, np.round(predicted)))
            if param == "precision":
                results.append(precision_score(Y, np.round(predicted)))
            if param == "fmeasure":
                precision = precision_score(Y, np.round(predicted))
                recall = recall_score(Y, np.round(predicted))
                results.append(2*precision*recall/ (precision+recall))
        return results
    

    构建网络EEGNet,并设置二分类交叉熵和Adam优化器

    # 定义网络
    net = EEGNet()
    # 定义二分类交叉熵 (Binary Cross Entropy)
    criterion = nn.BCELoss()
    # 定义Adam优化器
    optimizer = optim.Adam(net.parameters())
    

    创建数据集

    """
    生成训练数据集,数据集有100个样本
    训练数据X_train:为[0,1)之间的随机数;
    标签数据y_train:为0或1
    """
    X_train = np.random.rand(100, 1, 120, 64).astype('float32')
    y_train = np.round(np.random.rand(100).astype('float32')) 
    """
    生成验证数据集,数据集有100个样本
    验证数据X_val:为[0,1)之间的随机数;
    标签数据y_val:为0或1
    """
    X_val = np.random.rand(100, 1, 120, 64).astype('float32')
    y_val = np.round(np.random.rand(100).astype('float32'))
    """
    生成测试数据集,数据集有100个样本
    测试数据X_test:为[0,1)之间的随机数;
    标签数据y_test:为0或1
    """
    X_test = np.random.rand(100, 1, 120, 64).astype('float32')
    y_test = np.round(np.random.rand(100).astype('float32'))
    

    训练并验证

    batch_size = 32
    # 训练 循环
    for epoch in range(10): 
        print("
    Epoch ", epoch)
    
        running_loss = 0.0
        for i in range(len(X_train)//batch_size-1):
            s = i*batch_size
            e = i*batch_size+batch_size
    
            inputs = torch.from_numpy(X_train[s:e])
            labels = torch.FloatTensor(np.array([y_train[s:e]]).T*1.0)
    
            # wrap them in Variable
            inputs, labels = Variable(inputs), Variable(labels)
    
            # zero the parameter gradients
            optimizer.zero_grad()
    
            # forward + backward + optimize
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
    
            optimizer.step()
    
            running_loss += loss.item()
    
        # 验证
        params = ["acc", "auc", "fmeasure"]
        print(params)
        print("Training Loss ", running_loss)
        print("Train - ", evaluate(net, X_train, y_train, params))
        print("Validation - ", evaluate(net, X_val, y_val, params))
        print("Test - ", evaluate(net, X_test, y_test, params))
    

    Epoch 0
    ['acc', 'auc', 'fmeasure']
    Training Loss 1.6107637286186218
    Train - [0.52, 0.5280448717948718, 0.6470588235294118]
    Validation - [0.55, 0.450328407224959, 0.693877551020408]
    Test - [0.54, 0.578926282051282, 0.6617647058823529]

    Epoch 1
    ['acc', 'auc', 'fmeasure']
    Training Loss 1.5536684393882751
    Train - [0.45, 0.41145833333333337, 0.5454545454545454]
    Validation - [0.55, 0.4823481116584565, 0.6564885496183207]
    Test - [0.65, 0.6530448717948717, 0.7107438016528926]

    Epoch 2
    ['acc', 'auc', 'fmeasure']
    Training Loss 1.5197088718414307
    Train - [0.49, 0.5524839743589743, 0.5565217391304348]
    Validation - [0.53, 0.5870279146141215, 0.5436893203883495]
    Test - [0.57, 0.5428685897435898, 0.5567010309278351]

    Epoch 3
    ['acc', 'auc', 'fmeasure']
    Training Loss 1.4534167051315308
    Train - [0.53, 0.5228365384615385, 0.4597701149425287]
    Validation - [0.5, 0.48152709359605916, 0.46808510638297873]
    Test - [0.61, 0.6502403846153847, 0.5517241379310345]

    Epoch 4
    ['acc', 'auc', 'fmeasure']
    Training Loss 1.3821702003479004
    Train - [0.46, 0.4651442307692308, 0.3076923076923077]
    Validation - [0.47, 0.5977011494252874, 0.29333333333333333]
    Test - [0.52, 0.5268429487179488, 0.35135135135135137]

    Epoch 5
    ['acc', 'auc', 'fmeasure']
    Training Loss 1.440490186214447
    Train - [0.56, 0.516025641025641, 0.35294117647058826]
    Validation - [0.36, 0.3801313628899836, 0.2]
    Test - [0.53, 0.6113782051282052, 0.27692307692307694]

    Epoch 6
    ['acc', 'auc', 'fmeasure']
    Training Loss 1.4722238183021545
    Train - [0.47, 0.4194711538461539, 0.13114754098360656]
    Validation - [0.46, 0.5648604269293925, 0.2285714285714286]
    Test - [0.5, 0.5348557692307693, 0.10714285714285714]

    Epoch 7
    ['acc', 'auc', 'fmeasure']
    Training Loss 1.3460421562194824
    Train - [0.51, 0.44871794871794873, 0.1694915254237288]
    Validation - [0.44, 0.4490968801313629, 0.2]
    Test - [0.53, 0.4803685897435898, 0.14545454545454545]

    Epoch 8
    ['acc', 'auc', 'fmeasure']
    Training Loss 1.3336675763130188
    Train - [0.54, 0.4130608974358974, 0.20689655172413793]
    Validation - [0.39, 0.40394088669950734, 0.14084507042253522]
    Test - [0.51, 0.5400641025641025, 0.19672131147540983]

    Epoch 9
    ['acc', 'auc', 'fmeasure']
    Training Loss 1.438510239124298
    Train - [0.53, 0.5392628205128205, 0.22950819672131148]
    Validation - [0.42, 0.4848111658456486, 0.09375]
    Test - [0.56, 0.5420673076923076, 0.2413793103448276]

    参考
    应用深度学习EEGNet来处理脑电信号

    本文章由脑机学习者Rose笔记分享,QQ交流群:903290195
    更多分享,请关注公众号

  • 相关阅读:
    33. 搜索旋转排序数组
    54. 螺旋矩阵
    46. 全排列
    120. 三角形最小路径和
    338. 比特位计数
    746. 使用最小花费爬楼梯
    spring boot的一些常用注解
    SSM整合Dubbo案例
    一些面试题
    Spring Aop和Spring Ioc(二)
  • 原文地址:https://www.cnblogs.com/RoseVorchid/p/12197841.html
Copyright © 2011-2022 走看看