如何快速提高你的薪资?-实力拍“跳槽吧兄弟”梦想活动即将开启
ConcurrentHashMap通常只被看做并发效率更高的Map,用来替换其他线程安全的Map容器,比如Hashtable和Collections.synchronizedMap。实际上,线程安全的容器,特别是Map,应用场景没有想象中的多,很多情况下一个业务会涉及容器的多个操作,即复合操作,并发执行时,线程安全的容器只能保证自身的数据不被破坏,但无法保证业务的行为是否正确。
举个例子:统计文本中单词出现的次数,把单词出现的次数记录到一个Map中,代码如下:
1
2
3
4
5
6
7
8
|
private final Map<String, Long> wordCounts = new ConcurrentHashMap<>(); public long increase(String word) { Long oldValue = wordCounts.get(word); Long newValue = (oldValue == null ) ? 1L : oldValue + 1 ; wordCounts.put(word, newValue); return newValue; } |
除了用锁解决这个问题,另外一个选择是使用ConcurrentMap接口定义的方法:
1
2
3
4
5
6
|
public interface ConcurrentMap<K, V> extends Map<K, V> { V putIfAbsent(K key, V value); boolean remove(Object key, Object value); boolean replace(K key, V oldValue, V newValue); V replace(K key, V value); } |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
|
private final ConcurrentMap<String, Long> wordCounts = new ConcurrentHashMap<>(); public long increase(String word) { Long oldValue, newValue; while ( true ) { oldValue = wordCounts.get(word); if (oldValue == null ) { // Add the word firstly, initial the value as 1 newValue = 1L; if (wordCounts.putIfAbsent(word, newValue) == null ) { break ; } } else { newValue = oldValue + 1 ; if (wordCounts.replace(word, oldValue, newValue)) { break ; } } } return newValue; } |
上面的实现每次调用都会涉及Long对象的拆箱和装箱操作,很明显,更好的实现方式是采用AtomicLong,下面是采用AtomicLong后的代码:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
private final ConcurrentMap<String, AtomicLong> wordCounts = new ConcurrentHashMap<>(); public long increase(String word) { AtomicLong number = wordCounts.get(word); if (number == null ) { AtomicLong newNumber = new AtomicLong( 0 ); number = wordCounts.putIfAbsent(word, newNumber); if (number == null ) { number = newNumber; } } return number.incrementAndGet(); } |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
private final ConcurrentMap<String, Future<ExpensiveObj>> cache = new ConcurrentHashMap<>(); public ExpensiveObj get( final String key) { Future<ExpensiveObj> future = cache.get(key); if (future == null ) { Callable<ExpensiveObj> callable = new Callable<ExpensiveObj>() { @Override public ExpensiveObj call() throws Exception { return new ExpensiveObj(key); } }; FutureTask<ExpensiveObj> task = new FutureTask<>(callable); future = cache.putIfAbsent(key, task); if (future == null ) { future = task; task.run(); } } try { return future.get(); } catch (Exception e) { cache.remove(key); throw new RuntimeException(e); } } |
最后再补充一下,如果真要实现前面说的统计单词次数功能,最合适的方法是Guava包中AtomicLongMap;一般使用ConcurrentHashMap,也尽量使用Guava中的MapMaker或cache实现。