zoukankan      html  css  js  c++  java
  • NOI 2009 诗人小G

    两天6 hours+我终于把这道题改完啦!!!!

    呜呜呜呜决策单调性真的太鹅星了!!!

    通过这道题对决策单调性有一定的认识了

    先给自己补充几个知识点 来源是luogu题解的第一篇

    四边形不等式

    若对于定义域上的任意整数 a,b,c,d,其中a≤b≤c≤d,都有以下方程成立,则称函数w满足四边形不等式

    可将四边形不等式转化为另一种形式,其中 a<b ,请自行证明等价于上式:(代进去就好了)

    设 k[i]表示 f[i]的最优决策,若满足如下等式,则称f满足决策单调性:

    要证明上述状态转移方程具有决策单调性,只需证明其满足四边形不等式:

    证明:若满足四边形不等式,则 i[1,nj[0,k[i]1] ,根据 k[i]k[i] 的最优性有:

    对于i[i+1,n] ,因为 w 满足四边形不等式有:

    移项得:

    与第一个等式相加得:

    这个不等式的含义为,以 k[i] 作为 f[i'] 的决策,比以 j<k[i] 作为 f[i'] 的决策更优。

    也就是说k[i]≥k[i] ,所以 f 具有决策单调性。

     

    决策单调性

    下证状态转移方程 

     

    具有决策单调性。

    证明:四边形不等式如下:

     

    设 a[i]=S[i]+i,D[i]=l[i]+1,X=L+1,其中 a[i+1]=a[i]+D[i+1]

    则 w[j,i]=|a[i]-a[j]-X|^P  所以只需证明:

    设 S=a[i]-a[j]-X, T=a[i+1]-a[i]-X ,则上式等价于:

     

    因为 T=S+D[i+1] ,且 D[i+1]>0 ,所以 S<T 。

    故只需证明下列函数在整数域内 (非严格) 单调递增:

     

    然后就是求导什么的 我不会...液!!等我以后学了求导来填这个坑...!!!

    综上所述,状态转移方程 

     

    具有决策单调性... 显然对我而言还是打表法和瞪眼法更有用..

     

     

    好我补充的就差不多了 具体对这道题而言

    有两个问题 1. dp值 2.输出方案

     

    就是每一个点都有其对应的最优决策点

    在每次更新之后要看下那些新的区间可以以我现在的点作为决策点

    比较函数就是用方程来计算用b点更新a点的更新值 显然这个更新值越小越好

    这时候就要对于原数组进行修改 但是对于原数组修改太慢了 就开一个结构体

    储存对于以i作为最优决策点的区间的左端点和右端点 

    然后开一个队列把这些区间都存进去 

    每次在更新i点的时候就看一下i是否在目前的队首区间 不在就head ++

    然后就更新 因为要输出方案 所以要记录一下他的决策点是什么

    更新完了之后就处理出以i作为最优决策点的区间

    怎么更新呢 他有可能覆盖掉之前的一整个区间

    就像这样 011111111222   -> 011111333333 

    以这个例子而言  就判断原来2区间的左端点和以3作为决策点哪个更优

    若3更优 就把2弹出队列 tail - -  然后在最后这个区间里面二分找出最优决策点就可以了

    为什么队列不会弹空呢 因为如果要弹空的话 那么一号点早就已经更新过了 

    这个时候在妄图覆盖掉不会在用的点是不明智的 也是不合法的..(总不可能用后面的点去搞前面吧)

    (当然我觉得在每次弹的时候判断一下队尾区间的右端点是否小于i 如果小于就不弹了也是ok的)

    但是也有可能这个新的i作为决策点一点用都没有

    那么就在弹之前判断一下用 i 和原来队尾哪个更新n更优 如果 i 更劣 那么就直接continue就好了

    但是有一个至今都在困扰我的问题 就是在二分的时候为什么判断条件一定要是≤ 而不是<

    这个有什么影响吗???用他们去更新对应点答案不是一样的吗 除了区间会变以外 

    但是在二分的时候他也会搞到这个东西啊 为什么dp值会出问题呢????

    (但是这个会影响方案的输出 但是我认为如果一样 输出的都是合法方案)

     

    第二个问题就是输出方案 因为我们记录了每个点从哪个点转移而来的

    所以就从n来倒着搞  搞出每个点可以转移到哪个点

    转移点是作为它那一行的最后一句话的 他的转移过去的点也是作为那行的最后一句话

    就依次输出对应的一行就好了

    差不多就是这个样子吧

    代码

    #include <bits/stdc++.h>
    #define oo 1e18
    typedef long double ld;
    
    using namespace std;
    
    const int N = 1e5 + 5;
    
    int T,from[N],que[N],L,P,n,sum[N],nxt[N];
    ld f[N];
    char s[N][35];
    
    struct section {
        
        int l,r;
    }sec[N];
    
    void init( ) {
        
        memset(s,0,sizeof(s));
        memset(f,0,sizeof(f));
        memset(nxt,0,sizeof(nxt));
        memset(from,0,sizeof(from));
        memset(que,0,sizeof(que));
        memset(sec,0,sizeof(sec));
        for(int i = 1;i <= n;i ++) {
            scanf("%s",s[i] + 1);
            int len = strlen(s[i] + 1);
            sum[i] = sum[i - 1] + len + 1;
        }
    }
    
    ld fast_pow(ld a,int b) {
        
        ld ans = 1;
        for(;b;b >>= 1,a = a * a)
          if(b & 1) ans = ans * a;
        return ans;
    }
    
    ld cmp(int a,int b) {
        
        ld ans = f[a] + fast_pow(abs(sum[b] - sum[a] - L - 1),P);
        return ans;
    }
    
    void solve( ) {
        
        int h = 1,t = 0;
        que[++ t] = 0;
        sec[t].l = 1; sec[t].r = n;
        for(int i = 1;i <= n;i ++) {
            
            while(h < t && sec[que[h]].r < i) h ++;
            f[i] = f[que[h]] + fast_pow(abs(sum[i] - sum[que[h]] - 1 - L),P);
            from[i] = que[h];
            if (cmp(que[t],n) < cmp(i, n)) continue;
            while(h < t && cmp(i,sec[que[t]].l) < cmp(que[t],sec[que[t]].l)) {
                sec[que[t]].l = 0;
                sec[que[t]].r = 0;
                t --;
            }
            int lf = sec[que[t]].l,rg = n;
            int ans = rg + 1;
            while(lf <= rg) {
                int mid = (lf + rg) >> 1;
                ld aa = cmp(i,mid); 
                ld bb = cmp(que[t],mid);
                if(aa <= bb) {
                    rg = mid - 1;
                    ans = mid;
                }
                else lf = mid + 1;
            }
            sec[que[t]].r = ans - 1; que[++ t] = i;
            sec[que[t]].l = ans; sec[que[t]].r = n;
         }
    }
    
    void print( ) {
        
        if(f[n] > oo) {
            printf("Too hard to arrange
    ");
        }
        else {
            printf("%lld
    ",(long long)(f[n] + 0.5));
            for (int i = n;i;i = from[i]) {
                    nxt[from[i]] = i;
                }
                for (int i = 1,cur = 0;i <= n;i = cur + 1) {
                    cur = nxt[cur];
                    for (int j = i;j < cur;j++) {
                        printf("%s ", s[j] + 1);
                    }
                    printf("%s
    ",s[cur] + 1);
                }
        }
        printf("--------------------
    ");
    }
    
    int main( ) {
        
        scanf("%d",& T);
        while(T --) {
            
            scanf("%d%d%d",& n,& L,& P);
            init( );
            solve( );
            print( );
        }
    }
  • 相关阅读:
    解决springmvc报错,java.lang.IllegalArgumentException:No converter found for return value of type: class .......
    BidiMap MultiMap LazyMap
    双色球2013年统计,从网上爬虫出来的
    捡石子小游戏程序解析
    Linux常用命令--List of commands(附目录切换命令)
    格式化字符串
    有关循环
    使用python 3.x 对pythonchallenge-----8的解答过程
    使用python 3.x 对pythonchallenge-----7的解答过程
    使用python 3.x 对pythonchallenge-----6的解答过程
  • 原文地址:https://www.cnblogs.com/Rubenisveryhandsome/p/9484343.html
Copyright © 2011-2022 走看看