zoukankan      html  css  js  c++  java
  • 「多项式除法」

    「多项式除法」

    前置知识

    多项式乘法

    多项式乘法逆

    基本问题

    给定一个 (n) 次多项式 (F(x)) 和一个 (m) 次多项式 (G(x)),求 (A(x))(B(x)) 满足

    [F(x)=A(x)G(x)+B(x) ]

    显然 (A(x)) 的次数为 (n - m)(B(x)) 的次数 (leq m - 1)

    新定义

    [A_R(x)=x^nA(frac{1}{x}) ]

    容易发现 (A_R(x)) 的系数是 (A(x)) 的系数 (reverse) 得到的。

    简单证明

    [A(x)=sum^{n}_{i=0}a_ix^i ]

    [A(frac{1}{x})=sum^{n}_{i=0}a_ix^{-i} ]

    [A_R(x)=x^nA(frac{1}{x})=sum^{n}_{i=0}a_ix^{n-i}=sum^{n}_{i=0}a_{n-i}x^i ]

    [A_R(x)=sum^{n}_{i=0}a_{n-i}x^i ]

    证毕

    [ecause F(x)=A(x)G(x)+B(x) ]

    [F(frac{1}{x})=A(frac{1}{x})G(frac{1}{x})+B(frac{1}{x}) ]

    两边同乘 (x^n)

    [x^nF(frac{1}{x})=x^{n-m}A(frac{1}{x})x^mG(frac{1}{x})+x^{n-m+1}x^{m-1}B(frac{1}{x}) ]

    [F_R(x)=A_R(x)G_R(x)+x^{n-m+1}B_R(x) ]

    [F_R(x)equiv A_R(x)G_R(x)(mod;x^{n-m+1}) ]

    [A_R(x)equiv F_R(x)G_R^{-1}(x)(mod;x^{n-m+1}) ]

    然后通过 (reverse) 操作得到 (A(x))

    [B(x)=F(x)-A(x)G(x) ]

    代码
    #include <cstdio>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    
    typedef long long ll;
    typedef unsigned long long ull;
    
    using namespace std;
    
    const int maxn = 3e5 + 50, INF = 0x3f3f3f3f, mod = 998244353, inv3 = 332748118;
    
    inline int read () {
    	register int x = 0, w = 1;
    	register char ch = getchar ();
    	for (; ch < '0' || ch > '9'; ch = getchar ()) if (ch == '-') w = -1;
    	for (; ch >= '0' && ch <= '9'; ch = getchar ()) x = x * 10 + ch - '0';
    	return x * w;
    }
    
    inline void write (register int x) {
    	if (x / 10) write (x / 10);
    	putchar (x % 10 + '0');
    }
    
    int n, m;
    int f[maxn], g[maxn];
    int fr[maxn], gr[maxn], ngr[maxn];
    int rev[maxn], res[maxn];
    int A[maxn], B[maxn];
    
    inline int qpow (register int a, register int b, register int ans = 1) {
    	for (; b; b >>= 1, a = 1ll * a * a % mod) 
    		if (b & 1) ans = 1ll * ans * a % mod;
    	return ans;
    } 
    
    inline void NTT (register int len, register int * a, register int opt) {
    	for (register int i = 1; i < len; i ++) if (i < rev[i]) swap (a[i], a[rev[i]]);
    	for (register int d = 1; d < len; d <<= 1) {
    		register int w1 = qpow (opt, (mod - 1) / (d << 1));
    		for (register int i = 0; i < len; i += d << 1) {
    			register int w = 1;
    			for (register int j = 0; j < d; j ++, w = 1ll * w * w1 % mod) {
    				register int x = a[i + j], y = 1ll * w * a[i + j + d] % mod;
    				a[i + j] = (x + y) % mod, a[i + j + d] = (x - y + mod) % mod;
    			}
    		}
    	}
    }
    
    inline void Poly_Inv (register int d, register int * a, register int * b) {
    	if (d == 1) return b[0] = qpow (a[0], mod - 2), void ();
    	Poly_Inv ((d + 1) >> 1, a, b);
    	register int len = 1, bit = 0;
    	while (len < (d << 1)) len <<= 1, bit ++;
    	for (register int i = 0; i < len; i ++) res[i] = 0, rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << bit - 1);
    	for (register int i = 0; i < d; i ++) res[i] = a[i];
    	NTT (len, res, 3), NTT (len, b, 3);
    	for (register int i = 0; i < len; i ++) b[i] = ((2ll * b[i] % mod - 1ll * res[i] * b[i] % mod * b[i] % mod) % mod + mod) % mod;
    	NTT (len, b, inv3);
    	register int inv = qpow (len, mod - 2);
    	for (register int i = 0; i < d; i ++) b[i] = 1ll * b[i] * inv % mod;
    	for (register int i = d; i < len; i ++) b[i] = 0;
    }
    
    inline void Division (register int * f, register int * g) { // 除法
    	Poly_Inv (n - m + 1, gr, ngr);
    	register int len = 1, bit = 0;
    	while (len <= 2 * n - m + 1) len <<= 1, bit ++;
    	for (register int i = 0; i < len; i ++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << bit - 1);
    	NTT (len, fr, 3), NTT (len, ngr, 3);
    	for (register int i = 0; i < len; i ++) A[i] = 1ll * fr[i] * ngr[i] % mod;
    	NTT (len, A, inv3);
    	register int inv = qpow (len, mod - 2);
    	for (register int i = n - m + 1; i < len; i ++) A[i] = 0;
    	for (register int i = n - m; i >= 0; i --) printf ("%d ", A[i] = 1ll * A[i] * inv % mod); putchar ('
    ');
    	reverse (A, A + n - m + 1);
    }
    
    inline void Remainder (register int * f, register int * g) { // 取膜
    	register int len = 1, bit = 0;
    	while (len <= n) len <<= 1, bit ++;
    	for (register int i = 0; i < len; i ++) res[i] = 0, rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << bit - 1);
    	NTT (len, A, 3), NTT (len, g, 3);
    	for (register int i = 0; i < len; i ++) res[i] = 1ll * A[i] * g[i] % mod;
    	NTT (len, res, inv3);
    	register int inv = qpow (len, mod - 2);
    	for (register int i = 0; i <= m - 1; i ++) printf ("%lld ", ((f[i] - 1ll * res[i] * inv % mod) % mod + mod) % mod); putchar ('
    ');
    }
    
    int main () {
    	n = read(), m = read();
    	for (register int i = 0; i <= n; i ++) f[i] = fr[n - i] = read();
    	for (register int i = 0; i <= m; i ++) g[i] = gr[m - i] = read();
    	Division (f, g), Remainder(f, g);
    	return 0;
    }
    
  • 相关阅读:
    HTML: 表单标签、CSS语法、CSS选择器、CSS属性
    HTML:快速入门、表格标签
    JDBC连接池&JDBCTemplate
    JDBC
    MYSQL多表查询&事务
    使用CompletionService批处理任务(线程池阻塞线程)
    java运行字符串代码
    Linux常用命令大全(非常全!!!)
    SpringBoot防止重复请求,重复表单提交超级简单的注解实现
    在Spring-boot中,为@Value注解添加从数据库读取properties支持
  • 原文地址:https://www.cnblogs.com/Rubyonly233/p/14210799.html
Copyright © 2011-2022 走看看