题意:LIS(Longest Increasing Subsequence)裸题
分析:状态转移方程:dp[i] = max (dp[j]) + 1 (a[j] < a[i],1 <= j < i) 附带有print输出路径函数
代码:
#include <cstdio> #include <algorithm> #include <cstring> using namespace std; const int N = 1e4 + 10; const int INF = 0x3f3f3f3f; int a[N], dp[N], fa[N]; int n; void print(int x) { if (fa[x] != -1) { print (fa[x]); printf (" %d", a[x]); } else printf ("%d", a[x]); } void LIS(void) { int ret = 0, last = 0; for (int i=1; i<=n; ++i) { dp[i] = 1; fa[i] = -1; for (int j=1; j<i; ++j) { if (a[j] < a[i] && dp[i] < dp[j] + 1) { dp[i] = dp[j] + 1; fa[i] = j; } } if (ret < dp[i]) { ret = dp[i]; last = i; } } printf ("%d ", ret); // print (last); puts (""); } int main(void) { while (scanf ("%d", &n) == 1) { for (int i=1; i<=n; ++i) { scanf ("%d", &a[i]); } LIS (); } return 0; }