题意:
给出若干个点的坐标,用一个W*H的矩形去覆盖,问最多能覆盖几个点。
思路:
这是2014上海全国邀请赛的题目,以前写过,重新学习扫描线。首先把所有点移到第一象限([0, 40000]),每个点从左到右排序,每个点在Y轴看成[y,y+H]的线段,扫描线从左到右扫描,把这条线段在线段树上+1,表示进矩形框,然后扫到这点对应的(x+W, y)的位置就-1,表示出了这个矩形框。那么线段树维护连续区间的线段的最大重叠数,即能覆盖到点的最大数量。
#include <bits/stdc++.h> const int N = 1e4 + 5; struct Point { int x, y, z; }; Point point[N<<1]; bool cmp(const Point &a, const Point &b) { return a.x == b.x ? a.z > b.z : a.x < b.x; } #define lson l, mid, o << 1 #define rson mid + 1, r, o << 1 | 1 const int H = 40000 + 5; int sum[H<<2], lazy[H<<2]; void push_up(int o) { sum[o] = std::max (sum[o<<1], sum[o<<1|1]); } void push_down(int o) { if (lazy[o]) { lazy[o<<1] += lazy[o]; lazy[o<<1|1] += lazy[o]; sum[o<<1] += lazy[o]; sum[o<<1|1] += lazy[o]; lazy[o] = 0; } } void build(int l, int r, int o) { sum[o] = 0; lazy[o] = 0; if (l == r) { return ; } int mid = l + r >> 1; build (lson); build (rson); } void updata(int ql, int qr, int c, int l, int r, int o) { if (ql <= l && r <= qr) { sum[o] += c; lazy[o] += c; return ; } push_down (o); int mid = l + r >> 1; if (ql <= mid) { updata (ql, qr, c, lson); } if (qr > mid) { updata (ql, qr, c, rson); } push_up (o); } int main() { int n, w, h; while (scanf ("%d", &n) == 1 && n > 0) { scanf ("%d%d", &w, &h); int tot = 0; for (int i=0; i<n; ++i) { int x, y; scanf ("%d%d", &x, &y); x += 20000; y += 20000; point[tot].x = x; point[tot].y = y; point[tot++].z = 1; point[tot].x = x + w; point[tot].y = y; point[tot++].z = -1; } std::sort (point, point+tot, cmp); build (0, 40000, 1); int ans = 0; for (int i=0; i<tot; ++i) { int ql = point[i].y, qr = point[i].y + h; if (qr > 40000) qr = 40000; updata (ql, qr, point[i].z, 0, 40000, 1); ans = std::max (ans, sum[1]); } printf ("%d ", ans); } return 0; }