题意:如何花最小的代价使得一棵树划分开且不含同类节点
分析:当一条边连接的左右集合同类点小于等于1,那么不用删除,将两个集合合并,要求最小代价,那么贪心思想将权值降序排序,删除后剩下的就是最小值了。树形DP的方法以后再补上
收获:进一步理解Kruskal的算法过程,碰到新的问题要往经典的算法模型上转换
代码:
/************************************************ * Author :Running_Time * Created Time :2015-8-24 10:48:20 * File Name :D.cpp ************************************************/ #include <cstdio> #include <algorithm> #include <iostream> #include <sstream> #include <cstring> #include <cmath> #include <string> #include <vector> #include <queue> #include <deque> #include <stack> #include <list> #include <map> #include <set> #include <bitset> #include <cstdlib> #include <ctime> using namespace std; #define lson l, mid, rt << 1 #define rson mid + 1, r, rt << 1 | 1 typedef long long ll; const int N = 1e5 + 10; const int INF = 0x3f3f3f3f; const int MOD = 1e9 + 7; struct UF { int rt[N], rk[N]; void init(void) { memset (rt, -1, sizeof (rt)); memset (rk, 0, sizeof (rk)); } int Find(int x) { return rt[x] == -1 ? x : rt[x] = Find (rt[x]); } void Union(int x, int y) { x = Find (x), y = Find (y); if (x == y) return ; if (rk[x] >= rk[y]) { rt[y] = x; rk[x] += rk[y]; } else { rt[x] = y; rk[y] += rk[x]; } } bool same(int x, int y) { return (Find (x) == Find (y)); } }uf; struct Edge { int u, v, w; bool operator < (const Edge &r) const { return w > r.w; } }; int n, k; vector<Edge> G; int main(void) { int T; scanf ("%d", &T); while (T--) { scanf ("%d%d", &n, &k); uf.init (); G.clear (); ll ans = 0; for (int u, v, w, i=1; i<n; ++i) { scanf ("%d%d%d", &u, &v, &w); ans += w; G.push_back ((Edge) {u, v, w}); } sort (G.begin (), G.end ()); for (int x, i=0; i<k; ++i) { scanf ("%d", &x); uf.rk[x] = 1; } for (int i=0; i<n-1; ++i) { int u = G[i].u, v = G[i].v, w = G[i].w; u = uf.Find (u); v = uf.Find (v); if (uf.rk[u] + uf.rk[v] <= 1) { ans -= w; uf.Union (u, v); } } printf ("%I64d ", ans); } return 0; }