zoukankan      html  css  js  c++  java
  • 简单几何(直线与圆的交点) ZOJ Collision 3728

    题目传送门

    题意:有两个一大一小的同心圆,圆心在原点,大圆外有一小圆,其圆心有一个速度(vx, vy),如果碰到了小圆会反弹,问该圆在大圆内运动的时间

    分析:将圆外的小圆看成一个点,判断该直线与同心圆的交点,根据交点个数计算时间。用到了直线的定义,圆的定义,直线与圆交点的个数。

    /************************************************
    * Author        :Running_Time
    * Created Time  :2015/10/24 星期六 16:14:33
    * File Name     :C.cpp
     ************************************************/
    
    #include <cstdio>
    #include <algorithm>
    #include <iostream>
    #include <sstream>
    #include <cstring>
    #include <cmath>
    #include <string>
    #include <vector>
    #include <queue>
    #include <deque>
    #include <stack>
    #include <list>
    #include <map>
    #include <set>
    #include <bitset>
    #include <cstdlib>
    #include <ctime>
    using namespace std;
    
    #define lson l, mid, rt << 1
    #define rson mid + 1, r, rt << 1 | 1
    typedef long long ll;
    const int N = 1e5 + 10;
    const int INF = 0x3f3f3f3f;
    const int MOD = 1e9 + 7;
    const double EPS = 1e-10;
    int dcmp(double x)  {       //三态函数,减少精度问题
        if (fabs (x) < EPS) return 0;
        else    return x < 0 ? -1 : 1;
    }
    struct Point    {       //点的定义
        double x, y;
        Point (double x=0, double y=0) : x (x), y (y) {}
        Point operator + (const Point &r) const {       //向量加法
            return Point (x + r.x, y + r.y);
        }
        Point operator - (const Point &r) const {       //向量减法
            return Point (x - r.x, y - r.y);
        }
        Point operator * (double p)  {       //向量乘以标量
            return Point (x * p, y * p);
        }
        Point operator / (double p)  {       //向量除以标量
            return Point (x / p, y / p);
        }
        bool operator < (const Point &r) const {       //点的坐标排序
            return x < r.x || (x == r.x && y < r.y);
        }
        bool operator == (const Point &r) const {       //判断同一个点
            return dcmp (x - r.x) == 0 && dcmp (y - r.y) == 0;
        }
    };
    typedef Point Vector;       //向量的定义
    Point read_point(void)   {      //点的读入
        double x, y;
        scanf ("%lf%lf", &x, &y);
        return Point (x, y);
    }
    double polar_angle(Vector A)  {     //向量极角
        return atan2 (A.y, A.x);
    }
    double dot(Vector A, Vector B)  {       //向量点积
        return A.x * B.x + A.y * B.y;
    }
    double cross(Vector A, Vector B)    {       //向量叉积
        return A.x * B.y - A.y * B.x;
    }
    double length(Vector A) {       //向量长度,点积
        return sqrt (dot (A, A));
    }
    double angle(Vector A, Vector B)    {       //向量转角,逆时针,点积
        return acos (dot (A, B) / length (A) / length (B));
    }
    double area_triangle(Point a, Point b, Point c) {       //三角形面积,叉积
        return fabs (cross (b - a, c - a)) / 2.0;
    }
    Vector rotate(Vector A, double rad) {       //向量旋转,逆时针
        return Vector (A.x * cos (rad) - A.y * sin (rad), A.x * sin (rad) + A.y * cos (rad));
    }
    Vector nomal(Vector A)  {       //向量的单位法向量
        double len = length (A);
        return Vector (-A.y / len, A.x / len);
    }
    Point point_inter(Point p, Vector V, Point q, Vector W)    {        //两直线交点,参数方程
        Vector U = p - q;
        double t = cross (W, U) / cross (V, W);
        return p + V * t;
    }
    double dis_to_line(Point p, Point a, Point b)   {       //点到直线的距离,两点式
        Vector V1 = b - a, V2 = p - a;
        return fabs (cross (V1, V2)) / length (V1);
    }
    double dis_to_seg(Point p, Point a, Point b)    {       //点到线段的距离,两点式
      
        if (a == b) return length (p - a);
        Vector V1 = b - a, V2 = p - a, V3 = p - b;
        if (dcmp (dot (V1, V2)) < 0)    return length (V2);
        else if (dcmp (dot (V1, V3)) > 0)   return length (V3);
        else    return fabs (cross (V1, V2)) / length (V1);
    }
    Point point_proj(Point p, Point a, Point b)   {     //点在直线上的投影,两点式
        Vector V = b - a;
        return a + V * (dot (V, p - a) / dot (V, V));
    }
    bool inter(Point a1, Point a2, Point b1, Point b2)  {       //判断线段相交,两点式
        double c1 = cross (a2 - a1, b1 - a1), c2 = cross (a2 - a1, b2 - a1),
               c3 = cross (b2 - b1, a1 - b1), c4 = cross (b2 - b1, a2 - b1);
        return dcmp (c1) * dcmp (c2) < 0 && dcmp (c3) * dcmp (c4) < 0;
    }
    bool on_seg(Point p, Point a1, Point a2)    {       //判断点在线段上,两点式
        return dcmp (cross (a1 - p, a2 - p)) == 0 && dcmp (dot (a1 - p, a2 - p)) < 0;
    }
    double area_poly(Point *p, int n)   {       //多边形面积
        double ret = 0;
        for (int i=1; i<n-1; ++i)   {
            ret += fabs (cross (p[i] - p[0], p[i+1] - p[0]));
        }
        return ret / 2;
    }
    /*
        点集凸包,输入点集会被修改
    */
    vector<Point> convex_hull(vector<Point> &P) {
        sort (P.begin (), P.end ());
        P.erase (unique (P.begin (), P.end ()), P.end ());      //预处理,删除重复点
        int n = P.size (), m = 0;
        vector<Point> ret (n + 1);
        for (int i=0; i<n; ++i) {
            while (m > 1 && cross (ret[m-1]-ret[m-2], P[i]-ret[m-2]) < 0)   m--;
            ret[m++] = P[i];
        }
        int k = m;
        for (int i=n-2; i>=0; --i)  {
            while (m > k && cross (ret[m-1]-ret[m-2], P[i]-ret[m-2]) < 0)   m--;
            ret[m++] = P[i];
        }
        if (n > 1)  m--;
        ret.resize (m);
        return ret;
    }
     
    struct Circle   {
        Point c;
        double r;
        Circle () {}
        Circle (Point c, double r) : c (c), r (r) {}
        Point point(double a)   {
            return Point (c.x + cos (a) * r, c.y + sin (a) * r);
        }
    };
    
    struct Line {
        Point p;
        Vector v;
        double r;
        Line () {}
        Line (const Point &p, const Vector &v) : p (p), v (v) {
            r = polar_angle (v);
        }
        Point point(double a)   {
            return p + v * a;
        }
    };
    
    
    /*
        直线相交求交点,返回交点个数,交点保存在P中
    */
    int line_cir_inter(Line L, Circle C, double &t1, double &t2, vector<Point> &P)    {
        double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y;
        double e = a * a + c * c, f = 2 * (a * b + c * d), g = b * b + d * d - C.r * C.r;
        double delta = f * f - 4 * e * g;
        if (dcmp (delta) < 0)   return 0;
        if (dcmp (delta) == 0)  {
            t1 = t2 = -f / (2 * e); P.push_back (L.point (t1));
            return -1;
        }
        t1 = (-f - sqrt (delta)) / (2 * e); P.push_back (L.point (t1));
        t2 = (-f + sqrt (delta)) / (2 * e); P.push_back (L.point (t2));
        if (dcmp (t1) < 0 || dcmp (t2) < 0) return 0;
        return 2;
    }
     
    /*
        两圆相交求交点,返回交点个数。交点保存在P中
    */
    int cir_cir_inter(Circle C1, Circle C2, vector<Point> &P)    {
        double d = length (C1.c - C2.c);
        if (dcmp (d) == 0)  {
            if (dcmp (C1.r - C2.r) == 0)    return -1;      //两圆重叠
            else    return 0;
        }
        if (dcmp (C1.r + C2.r - d) < 0) return 0;
        if (dcmp (fabs (C1.r - C2.r) - d) < 0)  return 0;
        double a = polar_angle (C2.c - C1.c);
        double da = acos ((C1.r * C1.r + d * d - C2.r * C2.r) / (2 * C1.r * d));        //C1C2到C1P1的角?
        Point p1 = C1.point (a - da), p2 = C2.point (a + da);
        P.push_back (p1);
        if (p1 == p2)   return 1;
        else    P.push_back (p2);
        return 2;
    }
    
    int main(void)    {
        Circle C1, C2;  Point a, b;
        double Rm, R, r, x, y, vx, vy;
        while (scanf ("%lf%lf%lf%lf%lf%lf%lf", &Rm, &R, &r, &x, &y, &vx, &vy) == 7)    {
            Rm += r;    R += r;
            C1 = Circle (Point (0, 0), Rm);
            C2 = Circle (Point (0, 0), R);
            a = Point (x, y);   b = Point (vx, vy);
            vector<Point> P1, P2;   P1.clear ();    P2.clear ();
            double t1, t2, t3, t4, ans, speed = sqrt (vx * vx + vy * vy);
            int num1 = line_cir_inter (Line (a, b), C1, t1, t2, P1);
            int num2 = line_cir_inter (Line (a, b), C2, t3, t4, P2);
            if (num2 == 2)  {
                if (num1 == 2)   {
                    double len = length (P2[0] - P2[1]) - length (P1[0] - P1[1]);
                    ans = len / speed;
                }
                else    {
                    ans = length (P2[0] - P2[1]) / speed;
                }
            }
            else    {
                ans = 0.0;
            }
            printf ("%.4f
    ", ans);
        }
    
        return 0;
    }
    

      

    编译人生,运行世界!
  • 相关阅读:
    npm使用淘宝镜像源
    MapReduce任务执行源码分析
    spark.sql.shuffle.partitions到底影响什么
    hdfs的写入数据流程及异常情况分析
    面试题
    HDFS的双缓冲机制详解
    rpm包无法卸载
    hive建表支持的文件类型与压缩格式
    centos6中同时安装python3.7与python2.6
    linux centos6.x安装mysql5.6.33版本
  • 原文地址:https://www.cnblogs.com/Running-Time/p/4907417.html
Copyright © 2011-2022 走看看