题意:给出n个三维空间的球体,球体是以圆心坐标+半径来表示的,要求在球面上建桥使所有的球联通,求联通所建桥的最小长度。
分析:若两点距离大于两半径和的长度,那么距离就是两点距离 - 半径和,否则为0,Prim写错了,算法没有完全理解
/************************************************ * Author :Running_Time * Created Time :2015/10/25 12:00:48 * File Name :POJ_2031.cpp ************************************************/ #include <cstdio> #include <algorithm> #include <iostream> #include <sstream> #include <cstring> #include <cmath> #include <string> #include <vector> #include <queue> #include <deque> #include <stack> #include <list> #include <map> #include <set> #include <bitset> #include <cstdlib> #include <ctime> using namespace std; #define lson l, mid, rt << 1 #define rson mid + 1, r, rt << 1 | 1 typedef long long ll; const int N = 1e2 + 10; const int E = N * N; const int INF = 0x3f3f3f3f; const int MOD = 1e9 + 7; const double EPS = 1e-10; bool vis[N]; double d[N]; int head[N]; int n, m, e; int dcmp(double x) { //三态函数,减少精度问题 if (fabs (x) < EPS) return 0; else return x < 0 ? -1 : 1; } struct Point { double x, y, z, a; Point () {} Point (double x, double y, double z, double a) : x (x), y (y), z (z), a (a) {} Point operator - (const Point &r) const { //向量减法 return Point (x - r.x, y - r.y, z - r.z, 0); } }; typedef Point Vector; //向量的定义 Point read_point(void) { //点的读入 double x, y, z, r; scanf ("%lf%lf%lf%lf", &x, &y, &z, &r); return Point (x, y, z, r); } double dot(Vector A, Vector B) { //向量点积 return A.x * B.x + A.y * B.y + A.z * B.z; } double length(Vector A) { //向量长度,点积 return sqrt (dot (A, A)); } struct Edge { int v, nex; double w; Edge () {} Edge (int v, double w, int nex) : v (v), w (w), nex (nex) {} bool operator < (const Edge &r) const { return w > r.w; } }edge[E]; void init(void) { memset (head, -1, sizeof (head)); e = 0; } void add_edge(int u, int v, double w) { edge[e] = Edge (v, w, head[u]); head[u] = e++; } double Prim(int s) { memset (vis, false, sizeof (vis)); for (int i=0; i<n; ++i) d[i] = 1e9; priority_queue<Edge> Q; for (int i=head[s]; ~i; i=edge[i].nex) { int v = edge[i].v; double w = edge[i].w; if (d[v] > w) { d[v] = w; Q.push (Edge (v, d[v], 0)); } } vis[s] = true; d[s] = 0; double ret = 0; while (!Q.empty ()) { int u = Q.top ().v; Q.pop (); if (vis[u]) continue; vis[u] = true; ret += d[u]; for (int i=head[u]; ~i; i=edge[i].nex) { int v = edge[i].v; double w = edge[i].w; if (!vis[v] && d[v] > w) { d[v] = w; Q.push (Edge (v, d[v], 0)); } } } return ret; } Point p[N]; int main(void) { while (scanf ("%d", &n) == 1) { if (!n) break; for (int i=0; i<n; ++i) { p[i] = read_point (); } init (); for (int i=0; i<n; ++i) { for (int j=i+1; j<n; ++j) { double dis = length (p[i] - p[j]); double len = p[i].a + p[j].a; if (dcmp (dis - len) <= 0) { add_edge (i, j, 0); add_edge (j, i, 0); } else { add_edge (i, j, dis - len); add_edge (j, i, dis - len); } } } printf ("%.3f ", Prim (0)); } return 0; }