zoukankan      html  css  js  c++  java
  • 简单几何(线段相交) POJ 1066 Treasure Hunt

    题目传送门

    题意:从四面任意点出发,有若干障碍门,问最少要轰掉几扇门才能到达终点

    分析:枚举入口点,也就是线段的两个端点,然后选取与其他线段相交点数最少的 + 1就是答案。特判一下n == 0的时候

    /************************************************
    * Author        :Running_Time
    * Created Time  :2015/10/26 星期一 16:30:26
    * File Name     :POJ_1066.cpp
     ************************************************/
    
    #include <cstdio>
    #include <algorithm>
    #include <iostream>
    #include <sstream>
    #include <cstring>
    #include <cmath>
    #include <string>
    #include <vector>
    #include <queue>
    #include <deque>
    #include <stack>
    #include <list>
    #include <map>
    #include <set>
    #include <bitset>
    #include <cstdlib>
    #include <ctime>
    using namespace std;
    
    #define lson l, mid, rt << 1
    #define rson mid + 1, r, rt << 1 | 1
    typedef long long ll;
    const int N = 33;
    const int INF = 0x3f3f3f3f;
    const int MOD = 1e9 + 7;
    const double EPS = 1e-10;
    const double PI = acos (-1.0);
    int dcmp(double x)  {       //三态函数,减少精度问题
        if (fabs (x) < EPS) return 0;
        else    return x < 0 ? -1 : 1;
    }
    struct Point    {       //点的定义
        double x, y;
        Point (double x=0, double y=0) : x (x), y (y) {}
        Point operator + (const Point &r) const {       //向量加法
            return Point (x + r.x, y + r.y);
        }
        Point operator - (const Point &r) const {       //向量减法
            return Point (x - r.x, y - r.y);
        }
        Point operator * (double p)  {       //向量乘以标量
            return Point (x * p, y * p);
        }
        Point operator / (double p)  {       //向量除以标量
            return Point (x / p, y / p);
        }
        bool operator < (const Point &r) const {       //点的坐标排序
            return x < r.x || (x == r.x && y < r.y);
        }
        bool operator == (const Point &r) const {       //判断同一个点
            return dcmp (x - r.x) == 0 && dcmp (y - r.y) == 0;
        }
    };
    typedef Point Vector;       //向量的定义
    Point read_point(void)   {      //点的读入
        double x, y;
        scanf ("%lf%lf", &x, &y);
        return Point (x, y);
    }
    double dot(Vector A, Vector B)  {       //向量点积
        return A.x * B.x + A.y * B.y;
    }
    double cross(Vector A, Vector B)    {       //向量叉积
        return A.x * B.y - A.y * B.x;
    }
    double polar_angle(Vector A)  {     //向量极角
        return atan2 (A.y, A.x);
    }
    double length(Vector A) {       //向量长度,点积
        return sqrt (dot (A, A));
    }
    double angle(Vector A, Vector B)    {       //向量转角,逆时针,点积
        return acos (dot (A, B) / length (A) / length (B));
    }
    Vector rotate(Vector A, double rad) {       //向量旋转,逆时针
        return Vector (A.x * cos (rad) - A.y * sin (rad), A.x * sin (rad) + A.y * cos (rad));
    }
    Vector nomal(Vector A)  {       //向量的单位法向量
        double len = length (A);
        return Vector (-A.y / len, A.x / len);
    }
    Point line_line_inter(Point p, Vector V, Point q, Vector W)    {        //两直线交点,参数方程
        Vector U = p - q;
        double t = cross (W, U) / cross (V, W);
        return p + V * t;
    }
    double point_to_line(Point p, Point a, Point b)   {       //点到直线的距离,两点式
        Vector V1 = b - a, V2 = p - a;
        return fabs (cross (V1, V2)) / length (V1);
    }
    double point_to_seg(Point p, Point a, Point b)    {       //点到线段的距离,两点式
        if (a == b) return length (p - a);
        Vector V1 = b - a, V2 = p - a, V3 = p - b;
        if (dcmp (dot (V1, V2)) < 0)    return length (V2);
        else if (dcmp (dot (V1, V3)) > 0)   return length (V3);
        else    return fabs (cross (V1, V2)) / length (V1);
    }
    Point point_line_proj(Point p, Point a, Point b)   {     //点在直线上的投影,两点式
        Vector V = b - a;
        return a + V * (dot (V, p - a) / dot (V, V));
    }
    bool can_inter(Point a1, Point a2, Point b1, Point b2)  {       //判断线段相交,两点式
        double c1 = cross (a2 - a1, b1 - a1), c2 = cross (a2 - a1, b2 - a1),
               c3 = cross (b2 - b1, a1 - b1), c4 = cross (b2 - b1, a2 - b1);
        return dcmp (c1) * dcmp (c2) < 0 && dcmp (c3) * dcmp (c4) < 0;
    }
    bool on_seg(Point p, Point a1, Point a2)    {       //判断点在线段上,两点式
        return dcmp (cross (a1 - p, a2 - p)) == 0 && dcmp (dot (a1 - p, a2 - p)) < 0;
    }
    double area_triangle(Point a, Point b, Point c) {       //三角形面积,叉积
        return fabs (cross (b - a, c - a)) / 2.0;
    }
    double area_poly(Point *p, int n)   {       //多边形面积,叉积
        double ret = 0;
        for (int i=1; i<n-1; ++i)   {
            ret += fabs (cross (p[i] - p[0], p[i+1] - p[0]));
        }
        return ret / 2;
    }
    /*
        点集凸包
    */
    vector<Point> convex_hull(vector<Point> &P) {
        sort (P.begin (), P.end ());
        int n = P.size (), k = 0;
        vector<Point> ret (n * 2);
        for (int i=0; i<n; ++i) {
            while (k > 1 && cross (ret[k-1] - ret[k-2], P[i] - ret[k-1]) <= 0)  k--;
            ret[k++] = P[i];
        }
        for (int i=n-2, t=k; i>=0; --i)  {
            while (k > t && cross (ret[k-1] - ret[k-2], P[i] - ret[k-1]) <= 0)  k--;
            ret[k++] = P[i];
        }
        ret.resize (k-1);
        return ret;
    }
       
    struct Circle   {
        Point c;
        double r;
        Circle () {}
        Circle (Point c, double r) : c (c), r (r) {}
        Point point(double a)   {
            return Point (c.x + cos (a) * r, c.y + sin (a) * r);
        }
    };
    struct Line {
        Point p;
        Vector v;
        double r;
        Line () {}
        Line (const Point &p, const Vector &v) : p (p), v (v) {
            r = polar_angle (v);
        }
        Point point(double a)   {
            return p + v * a;
        }
    };
    
    Point s[N], e[N];
    Point p;
    int cnt1[N], cnt2[N];
    
    int main(void)    {
        int n;  scanf ("%d", &n);
        for (int i=1; i<=n; ++i)    {
            s[i] = read_point ();
            e[i] = read_point ();
        }
        p = read_point ();
        if (!n) {
            printf ("Number of doors = %d
    ", 1);   return 0;
        }
        int ans = INF;
        for (int i=1; i<=n; ++i)    {
            for (int j=1; j<=n; ++j)    {
                if (i == j) continue;
                if (can_inter (p, s[i], s[j], e[j]))    {
                    cnt1[i]++;
                }
                if (can_inter (p, e[i], s[j], e[j]))    {
                    cnt2[i]++;
                }
            }
            ans = min (ans, min (cnt1[i], cnt2[i]));
        }
    
        printf ("Number of doors = %d
    ", ans + 1);
    
       //cout << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.
    ";
    
        return 0;
    }
    

      

    编译人生,运行世界!
  • 相关阅读:
    atitit.TokenService v3 qb1 token服务模块的设计 新特性.docx
    Atitit attilax在自然语言处理领域的成果
    Atitit 图像清晰度 模糊度 检测 识别 评价算法 原理
    Atitit (Sketch Filter)素描滤镜的实现  图像处理  attilax总结
    atitit。企业的价值观 员工第一 vs 客户第一.docx
    Atitit 实现java的linq 以及与stream api的比较
    Atitit dsl exer v3 qb3 新特性
    Atititi tesseract使用总结
    Atitit 修改密码的功能流程设计 attilax总结
    atitit.TokenService v3 qb1  token服务模块的设计 新特性.docx
  • 原文地址:https://www.cnblogs.com/Running-Time/p/4911783.html
Copyright © 2011-2022 走看看