题意:问使得sum (k^i) = n || n -1 (1 <= i <= r) 的min (r*k)组合的r和k
分析:r的最大不会超过40,枚举r,二分搜索k。注意会爆long long,所以上界需要优化。r = 2开始上界就小于1e6,cyd将后面的范围也求出来了,其实1e6就够用了。
这水题卡了我好久,没有很好分析题目,做不出来就有种无力感,开始烦躁起来。还是题目做得少了,如果这种题做多了,可能看一眼就能做出来了。
/************************************************ * Author :Running_Time * Created Time :2010-1-16 12:18:59 * File Name :K.cpp ************************************************/ #include <cstdio> #include <algorithm> #include <iostream> #include <sstream> #include <cstring> #include <cmath> #include <string> #include <vector> #include <queue> #include <deque> #include <stack> #include <list> #include <map> #include <set> #include <bitset> #include <cstdlib> #include <ctime> using namespace std; #define lson l, mid, rt << 1 #define rson mid + 1, r, rt << 1 | 1 typedef long long ll; const int N = 1e5 + 10; const int INF = 0x3f3f3f3f; const int MOD = 1e9 + 7; const double EPS = 1e-10; const double PI = acos (-1.0); ll n, r, k; ll cal(ll x, int y) { ll ret = 0, p = x; for (int i=1; i<=y; ++i) { ret = ret + p; p *= x; if (ret > (ll)1e12) return ret; } return ret; } ll bsearch(ll l, ll r, int m, ll ans) { while (l <= r) { ll mid = (l + r) >> 1; ll sum = cal (mid, m); if (sum == ans) return mid; else if (sum < ans) l = mid + 1; else r = mid - 1; } return 0; } int main(void) { while (scanf ("%lld", &n) == 1) { r = 1; k = n - 1; ll kk; for (int i=2; i<=40; ++i) { kk = bsearch (2, 1e6, i, n); if (kk == 0) continue; if (1ll * i * kk < r * k) { r = i; k = kk; } } for (int i=2; i<=40; ++i) { kk = bsearch (2, 1e6, i, n - 1); if (kk == 0) continue; if (1ll * i * kk < r * k) { r = i; k = kk; } } printf ("%lld %lld ", r, k); } return 0; }