zoukankan      html  css  js  c++  java
  • 学习笔记--矩阵相关

    高斯消元

    找出变量间关系

     - 高斯-约当消元法
    
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <algorithm>
    #include <cctype>
    #include <cmath>
    using namespace std;
    const int maxn=103;
    const double eps=1e-8;
    int n;
    double a[maxn][maxn],b[maxn];//a--系数 b--常数 
    inline bool gs(){
    	double rate;
    	for(register int i=1;i<=n;i++){//消元 
    		int k=i;
    		for(register int j=i+1;j<=n;j++)
    		   if(fabs(a[j][i])>fabs(a[k][i]))k=j;//选取最大做主元防止误差 
    		if(fabs(rate=a[k][i])<eps)return 0;//主元无系数 无解 
    		for(register int j=i;j<=n;j++)swap(a[i][j],a[k][j]);//将主元那一行换到第i行来 
    		swap(b[i],b[k]); 
    		for(register int j=i;j<=n;j++)a[i][j]=a[i][j]/rate;//将主元系数化为1 
    		b[i]=b[i]/rate;
    		for(register int k=1;k<=n;k++){
    			if(k==i)continue;
    			rate=a[k][i];
    			for(int j=i;j<=n;j++)a[k][j]=a[k][j]-a[i][j]*rate;
    			b[k]=b[k]-b[i]*rate;
    		}
    	}
    	return 1;
    }
    int main(){
    	scanf("%d",&n);
    	for(register int i=1;i<=n;i++){
    		for(register int j=1;j<=n;j++){
    			scanf("%lf",&a[i][j]); 
    		}
    		scanf("%lf",&b[i]);
    	}
    	if(gs()==1){
    		for(register int i=1;i<=n;i++)printf("%.2lf
    ",b[i]);
    	}
    	else{
    		puts("No Solution");
    	}
    	return 0;
    }
    
    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cmath>
    #include <cstring>
    #include <algorithm>
    #include <cctype>
    using namespace std;
    const int maxn=13;
    const double eps=1e-8;
    double a[maxn][maxn],b[maxn][maxn],c[maxn];
    int n;
    inline void gs(){
    	double rate;
    	int mx;
    	for(register int i=1;i<=n;i++){
    		mx=i;
    		for(register int j=i+1;j<=n;j++){
    			if(fabs(b[j][i])>fabs(b[mx][i]))mx=j;
    		}
    		//if(fabs(rate=b[mx][i])<eps)return ;
    		rate=b[mx][i];
    		for(register int j=i;j<=n;j++){
    			swap(b[i][j],b[mx][j]);
    		}
    		swap(c[i],c[mx]);
    		for(register int j=i;j<=n;j++)b[i][j]=b[i][j]/rate;
    		c[i]=c[i]/rate;
    		for(register int k=1;k<=n;k++){
    			if(k==i)continue;
    			rate=b[k][i];
    			for(register int j=i;j<=n;j++)b[k][j]=b[k][j]-b[i][j]*rate;
    			c[k]=c[k]-c[i]*rate;
    		}
    	}
    	return ;
    }
    int main(){
    	scanf("%d",&n);
    	for(register int i=1;i<=n+1;i++){
    		for(register int j=1;j<=n;j++){
    			scanf("%lf",&a[i][j]);
    		}
    	}
    	for(register int i=1;i<=n;i++){
    		for(register int j=1;j<=n;j++){
    			b[i][j]=2*(a[i][j]-a[i+1][j]);	
    			c[i]+=a[i][j]*a[i][j]-a[i+1][j]*a[i+1][j];
    		}
    	}
    	gs();
    	for(register int i=1;i<=n;i++){
    		printf("%.3lf ",c[i]);
    	}
    	return 0;
    }
     
    

    线性基

    • 待填坑

    矩阵加速递推

    关键构造友矩阵

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <cstring>
    #include <algorithm>
    #include <cctype>
    #define ll long long 
    using namespace std;
    const int maxn=107;
    const long long p=1000000007;
    struct Matrix{
    	int n,m;
    	ll ma[maxn][maxn];
    	Matrix(int rk){n=m=rk;for(register int i=1;i<=rk;i++)ma[i][i]=1;}
    	Matrix(int rk_n,int rk_m){n=rk_n,m=rk_m;}
    	Matrix(){;}
    	Matrix operator *(const Matrix &x)const{
    	   Matrix c=Matrix(n,x.m);
    	   for(register int i=1;i<=n;i++){
    	   	for(register int j=1;j<=x.m;j++){
    	   		ll tmp=0;
    	   		for(register int k=1;k<=m;k++){
    	   			tmp+=ma[i][k]*x.ma[k][j];
    	   			if(tmp>19260817)tmp=tmp%p;
    			   }
    			c.ma[i][j]=tmp;
    		   }
    	   }
    	   return c;	
    	}
    	Matrix operator ^(const int &C)const{
    		int c=C;
    		Matrix ans=Matrix(n);
    		Matrix res=*this;
    		while(c){
    			if(c&1){ans=ans*res;}
    			res=res*res;
    			c=c>>1;
    		}
    		return ans;
    	}
    	Matrix operator ^(const ll &C)const{
    		ll c=C;
    		Matrix ans=Matrix(n);
    		Matrix res=*this;
    		while(c){
    			if(c&1){ans=ans*res;}
    			res=res*res;
    			c=c>>1;
    		}
    		return ans;
    	}
    };
    int main(){
    	ll n;
    	Matrix f0(2,1);f0.ma[1][1]=1,f0.ma[2][1]=1;
    	Matrix A(2);A.ma[1][1]=1,A.ma[1][2]=1,A.ma[2][1]=1,A.ma[2][2]=0;
    	scanf("%lld",&n);
    	if(n<=2){
    		cout<<1<<endl;
    		return 0;
    	}
    	//Matrix ans=mul(Matrix_ksm(A,n),f0);
    	//Matrix ans=(A^(n-1))*f0;
        A=A^(n-1);
        Matrix ans=f0*A;
    	printf("%lld
    ",ans.ma[1][1]);
    	return 0; 
    }
     
    
    • 简单变式

      注意!!!矩阵定义中一定要加memset,否则可能有非0元素,太恶心了

    #include <iostream>
    #include <cstdio>
    #include <cstdlib>
    #include <algorithm>
    #include <cstring>
    #include <cctype>
    #include <cmath>
    #define ll long long 
    const ll p=1000000007;
    const int maxn=15;
    int t;
    struct Matrix{
    	int n,m;
    	ll ma[maxn][maxn];//注意!!!!一定要memset 
    	Matrix(int _n){n=m=_n;memset(ma,0,sizeof(ma));for(register int i=1;i<=n;i++)ma[i][i]=1;}
    	Matrix(int _n,int _m){n=_n,m=_m;}
    	Matrix(){;}
    	Matrix operator *(const Matrix& b)const {
    		Matrix c=Matrix(n,b.m);
    		for(register int i=1;i<=n;i++){
    		  for(register int j=1;j<=b.m;j++){
    		  	ll tmp=0;
    		  	for(register int k=1;k<=m;k++){
    		  		tmp+=ma[i][k]*b.ma[k][j];
    		  		if(tmp>19260817)tmp=tmp%p;
    			  }
    			c.ma[i][j]=tmp;
    		  }
    	   }
    		  return c;
    	}
    	Matrix operator ^(const int &C)const {
    		int c=C;
    		Matrix ans=Matrix(n);
    		Matrix res=*this;
    		while(c){
    			if(c&1)ans=ans*res;
    			res=res*res;
    			c=c>>1;
    		}
    		return ans;
    	}
    	Matrix operator ^(const ll &C)const {
    		ll c=C;
    		Matrix ans=Matrix(n);
    		/*for(int i=1;i<=3;i++){
    		    for(int j=1;j<=3;j++)printf("%lld ",ans.ma[i][j]);
    		    puts("");
    	        }*/
    		Matrix res=*this;
    		while(c){
    			if(c&1)ans=ans*res;
    			res=res*res;
    			c=c>>1;
    			
    		}
    		return ans;
    	}
    };
    int main(){
    	ll n;
    	scanf("%d",&t);
    	while(t--){
    		scanf("%lld",&n);
    		if(n<=3){puts("1");continue;}
    		Matrix A=Matrix(3,3);
    		A.ma[1][1]=1;A.ma[1][2]=0;A.ma[1][3]=1;
    		A.ma[2][1]=1;A.ma[2][2]=0;A.ma[2][3]=0;
    		A.ma[3][1]=0;A.ma[3][2]=1;A.ma[3][3]=0;
    		Matrix f0=Matrix(3,1);
    		f0.ma[1][1]=1,f0.ma[2][1]=1,f0.ma[3][1]=1;
    	    A=A^(n-1);
    	    //std::cout<<'*'<<A.ma[1][1]<<std::endl;
    	    /*for(int i=1;i<=3;i++){
    		 for(int j=1;j<=3;j++)printf("%lld ",A.ma[i][j]);
    		 puts("");
    	    }*/
    		f0=f0*A;
    		printf("%lld
    ",f0.ma[1][1]);
    	}
    	return 0;
    }
    

    矩阵树定理(Matrix-Tree)

  • 相关阅读:
    smb上传图片工具类
    hzero
    ORACLE
    数据库范式
    数据库设计阶段
    Java变量和运算符
    相对路径和绝对路径
    setTimeout()方法和setInterval()方法
    body onload()事件和table insertRow()、tr insertCell()
    eval函数和isNaN函数
  • 原文地址:https://www.cnblogs.com/Rye-Catcher/p/9063927.html
Copyright © 2011-2022 走看看