题目链接
https://www.luogu.org/problemnew/show/P2261
分析
显然(k) (mod) (i=k-lfloor {k/i} floor * i),于是我们只需要求(N * k-sum_{i=1}^N {lfloor {k/i} floor * i})
这里就需要数论分块,也称作整除分块的知识
结论:
(forall{i} in [x,lfloor {k/{lfloor {k/x} floor }} floor]),(lfloor k/i floor)的值都相等
证明
先咕了....
于是这道题再套个等差数列求和就完了...
代码
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
#include <cctype>
#define ll long long
#define ri register int
using std::min;
using std::max;
ll n,k,ans=0,g;
int main(){
scanf("%lld %lld",&n,&k);
ans=n*k;
for(ri i=1;i<=n;i=g+1){
g= k/i ? min(k/(k/i),n) : n;//如果i大于k的话直接一步把后面的算完
ans -= (i+g)*(g-i+1)/2 * (k/i);
// 等差数列求和 数论分块
}
printf("%lld
",ans);
return 0;
}