zoukankan      html  css  js  c++  java
  • [CodeVs3196]黄金宝藏(DP/极大极小搜索)

          题目大意:给出n(≤500)个数,两个人轮流取数,每次可以从数列左边或者右边取一个数,直到所有的数被取完,两个人都以最优策略取数,求最后两人所得分数。

          显然这种类型的博弈题,第一眼就是极大极小搜索+记忆化,但是我并不是很会极大极小搜索TAT。然后第二眼发现可以用DP写,而且显然比极大极小搜索好写啊。这一类的题有一个最普遍的做法,预处理出前缀和,然后f[i][j]表示从第i个数到第j个数先手可得到的最大得分,则有$$f[i][j]=sum[j]-sum[i-1]-min(f[i+1][j],f[i][j-1]);$$【第i个数到第j个数的和减去min(第i+1个数到第j个数先手可得到的最大得分,第i个数到第j-1个数先手可得到的最大得分)】

          要注意一点,由于$$f[i][j]$$需要用到$$f[i+1][j]和f[i][j-1]$$,所以我们需要枚举的是i到j这个区间的长度,先把区间长度小的计算出来,才能计算区间长度大的,一开始就被这个坑了,果然我还是太弱了= =。。。

    代码如下:

    var
      n,i,j,x:longint;
      f:array[0..500,0..500]of longint;
      sum:array[0..500]of longint;
    
    function min(a,b:longint):longint;
    begin
      if a<b then exit(a);
      exit(b);
    end;
    
    begin
      readln(n);
      for i:=1 to n do
      begin
        read(x);
        sum[i]:=sum[i-1]+x;//前缀和
        f[i][i]:=x;
      end;
      for j:=1 to n-1 do//枚举区间长度
      for i:=1 to n-j do//枚举起点
      f[i][i+j]:=sum[i+j]-sum[i-1]-min(f[i+1][i+j],f[i][i+j-1]);
      writeln(f[1][n],' ',sum[n]-f[1][n]);//后手为sum[n]-f[1][n]
    end.
    View Code

          其实还可以省一维。

    代码如下:

    var
      n,i,j,x:longint;
      f:array[0..5001]of longint;
      sum:array[0..5001]of longint;
    
    function min(a,b:longint):longint;
    begin
      if a<b then exit(a);
      exit(b);
    end;
    
    begin
      readln(n);
      for i:=1 to n do
      begin
        read(x);
        sum[i]:=sum[i-1]+x;
        f[i]:=x;
      end;
      for i:=1 to n-1 do
      for j:=1 to n-i do
      f[j]:=sum[j+i]-sum[j-1]-min(f[j],f[j+1]);
      writeln(f[1],' ',sum[n]-f[1]);
    end.
    View Code

          当然,我不会极大极小搜索是因为我是蒟蒻啊。。。这道题HR神犇用的就是极大极小搜索,真是太神了%%%。

          dfs(l,r)表示已在左边取了l个数,已在右边取了r个数,在剩下的数里取,最多比对手多多少分,则有$$dfs(l,r):=max(a[l+1]-dfs(l+1,r),a[n-r]-dfs(l,r+1));$$由于双方都用最优策略,所以最多比对手多多少分=max(取左边的数-对手接下来最多比你多多少分,取右边的数-对手接下来最多比你多多少分);则先手分数为(总分+先手最多比后手多多少分)div 2,而后手得分则为(总分-先手最多比后手多多少分)div 2。

    代码如下:

    var n,i,j,res,sum:longint;
        a:array[0..1000] of longint;
        f:array[0..600,0..600] of longint;
    function max(a.b:longint):longint;
    begin
      if a>b then exit(a);
      exit(b);
    end;
    function dfs(l,r:longint):longint;
    begin
      if f[l,r]<>maxlongint then exit(f[l,r]);
      if l+r=n then begin
        f[l,r]:=0;
        exit(0);
      end;
      f[l,r]:=max(a[l+1]-dfs(l+1,r),a[n-r]-dfs(l,r+1));
      exit(f[l,r]);
    end;
    begin
      readln(n);
      sum:=0;
      for i:=1 to n do begin
        read(a[i]);
        inc(sum,a[i]);
      end;
      for i:=0 to n do
      for j:=0 to n-i do
      f[i,j]:=maxlongint;
      res:=dfs(0,0);
      writeln((sum+f[0,0]) div 2,' ',(sum-f[0,0]) div 2);
    end.
    View Code
  • 相关阅读:
    HRBUST 1377 金明的预算【DP】
    POJ 1745 Divisibility【DP】
    HRBUST 1476 教主们毕业设计排版==算法导论上的思考题整齐打印
    HRBUST 1220 过河【DP+状态】
    HRBUST 1478 最长公共子序列的最小字典序
    HRBUST 1162 魔女【DP】
    HDU 1561The more, The Better【DP】
    HRBUST 1376 能量项链【DP】
    POJ 1934 Trip【最长公共子序列输出】
    上传图片代码总结
  • 原文地址:https://www.cnblogs.com/Sakits/p/5348629.html
Copyright © 2011-2022 走看看