zoukankan      html  css  js  c++  java
  • Codeforces 582C. Superior Periodic Subarrays(数学+计数)

      首先可以把 i mod n=j mod n的看成是同一类,i mod s=j mod s的也看成是同一类,也就是i mod gcd(s,n)的是同一类,很好理解,但是不会数学证明...大概可以想成数轴上一点可以向左向右跳s或n,根据错位相消能互达的两点最小距离为gcd(s,n),所以如果选择点i必须满足a(i)>=a(i+k*gcd(s, n))。

      于是可以枚举d表示gcd(s, n),处理出所有可以被选择的点,1表示可选,0表示不可选,组成一个01序列,倍增一次后求出f[i]表示每一个点出发最长的连续的1,再预处理出cnt[i]表示1~i中gcd(i, n)==d的个数,最后枚举起点,sigma(cnt[f[i]])即为这个gcd(s, n)的贡献。

    #include<iostream>
    #include<cstring>
    #include<cstdlib>
    #include<cstdio>
    #define ll long long
    using namespace std;
    const int maxn=500010, inf=1e9+1;
    int n;
    int a[maxn], g[maxn], mx[maxn], can[maxn], f[maxn], cnt[maxn];
    ll ans;
    void read(int &k)
    {
        int f=1; k=0; char c=getchar();
        while(c<'0' || c>'9') c=='-' && (f=-1), c=getchar();
        while(c<='9' && c>='0') k=k*10+c-'0', c=getchar();
        k*=f;
    }
    inline int gcd(int a, int b){return b?gcd(b, a%b):a;}
    int main()
    {
        read(n);
        for(int i=0;i<n;i++) read(a[i]);
        for(int i=1;i<=n;i++) g[i]=gcd(i, n);
        for(int d=1;d<=n;d++)
        if(!(n%d))
        {
            for(int i=0;i<d;i++) mx[i]=0;
            for(int i=0;i<n;i++) mx[i%d]=max(mx[i%d], a[i]);
            for(int i=0;i<n;i++) can[i]=can[i+n]=(a[i]==mx[i%d]);
            for(int i=(n<<1)-2;~i;i--) f[i]=min(n-1, (can[i]?f[i+1]+1:0));
            for(int i=1;i<=n;i++) cnt[i]=cnt[i-1]+(g[i]==d);
            for(int i=0;i<n;i++) ans+=cnt[f[i]];
        }
        printf("%lld
    ", ans);
    }
    View Code
  • 相关阅读:
    正在呢 webflux
    reactive reactor
    从早上5:30开始整理资料
    1
    ES基础(四十七)第二部分总结与测验
    ES基础(四十六)Elasticsearch 数据建模最佳实践
    ES基础(四十四)Ingest Pipeline & Painless Script
    ES基础(四十三)Update by Query & Reindex
    ES基础(四十二)文档的父子关系
    ES基础(四十一)对象及Nested对象
  • 原文地址:https://www.cnblogs.com/Sakits/p/7976516.html
Copyright © 2011-2022 走看看