zoukankan      html  css  js  c++  java
  • 【ybtoj高效进阶 21177】小小网格(杜教筛)(数论分块)(莫比乌斯反演)

    小小网格

    题目链接:ybtoj高效进阶 21177

    题目大意

    给你求 ∑i=1~n∑j=1~mφ(gcd(i,j))。

    思路

    重新写好看点:
    (sumlimits_{i=1}^nsumlimits_{j=1}^mvarphi(gcd(i,j)))
    (sumlimits_{d}varphi(d)sumlimits_{i=1}^nsumlimits_{j=1}^m[gcd(i,j)=d])
    (sumlimits_{d}varphi(d)sumlimits_{i=1}^{leftlfloorfrac{n}{d} ight floor}sumlimits_{j=1}^{leftlfloorfrac{m}{d} ight floor}[gcd(i,j)=1])
    (sumlimits_{d}varphi(d)sumlimits_{i=1}^{leftlfloorfrac{n}{d} ight floor}sumlimits_{j=1}^{leftlfloorfrac{m}{d} ight floor}sumlimits_{p|gcd(i,j)}mu(p))
    (sumlimits_{d}varphi(d)sumlimits_{p}sumlimits_{i=1,i|p}^{leftlfloorfrac{n}{d} ight floor}sumlimits_{j=1,j|p}^{leftlfloorfrac{m}{d} ight floor}mu(p))
    (sumlimits_{d}varphi(d)sumlimits_{p}mu(p)cdotleftlfloordfrac{n}{dp} ight floorcdotleftlfloordfrac{m}{dp} ight floor)

    然后设 (T=pd),然后有:
    (sumlimits_{d}varphi(d)sumlimits_{p}mu(p)cdotleftlfloordfrac{n}{T} ight floorcdotleftlfloordfrac{m}{T} ight floor)
    (sumlimits_{T=1}^{min(n,m)}leftlfloordfrac{n}{T} ight floorcdotleftlfloordfrac{m}{T} ight floorcdot(sumlimits_{d|T}varphi(d)mu(dfrac{T}{d})))

    然后你会发现右边就是一个狄利克雷卷积。
    那我们设 (g=varphi*mu)(积性函数,因为是两个积性函数相乘),然后式子就是:
    (sumlimits_{T=1}^{min(n,m)}leftlfloordfrac{n}{T} ight floorcdotleftlfloordfrac{m}{T} ight floorcdot g(d))

    然后你发现左边两个可以数论分块,然后你考虑右边的能不能求前缀和。
    看到是积性函数,考虑用杜教筛,设 (S(n)=sumlimits_{i=1}^ng(i))

    然后你就要找一个合适的 (f),不难看出可以用 (I*I=d)
    然后 (g*d=varphi*mu*I*I=(varphi*I)*(mu*I)=id*epsilon=id)

    然后就有 (d(1)S(n)=sumlimits_{i=1}^nid(i)-sumlimits_{i=2}^nd(i)S(leftlfloordfrac{n}{i} ight floor)=dfrac{n(n+1)}{2}-sumlimits_{i=2}^nd(i)S(leftlfloordfrac{n}{i} ight floor))

    然后 (d(i)) 的前缀和可以数论分块,小于 (n^{frac{2}{3}}) 的预处理前缀和,大于的直接根号求。

    然后小小卡个常即可。

    代码

    #include<map>
    #include<cstdio>
    #define ll long long
    #define mo 1000000007
    
    using namespace std;
    
    const int Maxn = 2000001;
    int n, m;
    ll d[Maxn + 1], g[Maxn + 1], ans;
    int low[Maxn + 1], phi[Maxn + 1], prime[Maxn + 1];
    map <int, ll> ans_g;
    
    void init() {//杜教筛的预处理
    	g[1] = 1; phi[1] = 1; low[1] = 1;
    	for (int i = 2; i <= Maxn; i++) {
    		if (!low[i]) phi[i] = i - 1, low[i] = i, prime[++prime[0]] = i, g[i] = i - 2;
    		for (int j = 1; j <= prime[0] && i * prime[j] <= Maxn; j++) {
    			if (i % prime[j]) low[i * prime[j]] = prime[j], phi[i * prime[j]] = phi[i] * (prime[j] - 1), g[i * prime[j]] = g[i] * g[prime[j]];
    				else {
    					low[i * prime[j]] = low[i] * prime[j], phi[i * prime[j]] = phi[i] * prime[j];
    					if (low[i] != i) g[i * prime[j]] = g[i / low[i]] * g[low[i] * prime[j]];
    						else g[i * prime[j]] = phi[i * prime[j]] + phi[i] * (-1);
    					break;
    				}
    		}
    	}
    	for (int i = 1; i <= Maxn; i++)
    		for (int j = 1; i * j <= Maxn; j++)
    			d[i * j]++;
    	for (int i = 1; i <= Maxn; i++)
    		d[i] += d[i - 1], g[i] += g[i - 1];
    }
    
    ll sum_d(ll n) {//数论分块
    	if (n <= Maxn) return d[n];
    	ll re = 0;
    	for (ll l = 1, r; l <= n; l = r + 1) {
    		r = n / (n / l);
    		re += (r - l + 1) * (n / l);
    	}
    	return re;
    }
    
    ll sum_g(ll n) {//杜教筛
    	if (n <= Maxn) return g[n];
    	if (ans_g[n]) return ans_g[n];
    	ll re = n * (n + 1) / 2;
    	for (ll l = 2, r; l <= n; l = r + 1) {
    		r = n / (n / l);
    		re -= (sum_d(r) - sum_d(l - 1)) * sum_g(n / l);
    	}
    	return ans_g[n] = re;
    }
    
    int main() {
    //	freopen("mesh.in", "r", stdin);
    //	freopen("mesh.out", "w", stdout);
    	
    	scanf("%d %d", &n, &m);
    	
    	init();
    	
    	for (int l = 1, r; l <= n && l <= m; l = r + 1) {//数论分块
    		r = min(n / (n / l), m / (m / l));
    		ans = (ans + 1ll * (n / l) * (m / l) * (sum_g(r) - sum_g(l - 1))) % mo;
    	}
    	
    	printf("%lld", ans);
    	
    	return 0;
    }
    
  • 相关阅读:
    Java基础知识三点
    《计算机网络》读书笔记
    Shell编程初步
    《现代操作系统》读书笔记
    《数据库系统概论》读书笔记
    《数据结构》读书笔记
    Linux使用笔记
    【Thinking in Java】读书笔记
    算法题摘录六
    算法题摘录五
  • 原文地址:https://www.cnblogs.com/Sakura-TJH/p/YBT_GXJJ_21177.html
Copyright © 2011-2022 走看看