小小网格
题目链接:ybtoj高效进阶 21177
题目大意
给你求 ∑i=1~n∑j=1~mφ(gcd(i,j))。
思路
重新写好看点:
(sumlimits_{i=1}^nsumlimits_{j=1}^mvarphi(gcd(i,j)))
(sumlimits_{d}varphi(d)sumlimits_{i=1}^nsumlimits_{j=1}^m[gcd(i,j)=d])
(sumlimits_{d}varphi(d)sumlimits_{i=1}^{leftlfloorfrac{n}{d}
ight
floor}sumlimits_{j=1}^{leftlfloorfrac{m}{d}
ight
floor}[gcd(i,j)=1])
(sumlimits_{d}varphi(d)sumlimits_{i=1}^{leftlfloorfrac{n}{d}
ight
floor}sumlimits_{j=1}^{leftlfloorfrac{m}{d}
ight
floor}sumlimits_{p|gcd(i,j)}mu(p))
(sumlimits_{d}varphi(d)sumlimits_{p}sumlimits_{i=1,i|p}^{leftlfloorfrac{n}{d}
ight
floor}sumlimits_{j=1,j|p}^{leftlfloorfrac{m}{d}
ight
floor}mu(p))
(sumlimits_{d}varphi(d)sumlimits_{p}mu(p)cdotleftlfloordfrac{n}{dp}
ight
floorcdotleftlfloordfrac{m}{dp}
ight
floor)
然后设 (T=pd),然后有:
(sumlimits_{d}varphi(d)sumlimits_{p}mu(p)cdotleftlfloordfrac{n}{T}
ight
floorcdotleftlfloordfrac{m}{T}
ight
floor)
(sumlimits_{T=1}^{min(n,m)}leftlfloordfrac{n}{T}
ight
floorcdotleftlfloordfrac{m}{T}
ight
floorcdot(sumlimits_{d|T}varphi(d)mu(dfrac{T}{d})))
然后你会发现右边就是一个狄利克雷卷积。
那我们设 (g=varphi*mu)(积性函数,因为是两个积性函数相乘),然后式子就是:
(sumlimits_{T=1}^{min(n,m)}leftlfloordfrac{n}{T}
ight
floorcdotleftlfloordfrac{m}{T}
ight
floorcdot g(d))
然后你发现左边两个可以数论分块,然后你考虑右边的能不能求前缀和。
看到是积性函数,考虑用杜教筛,设 (S(n)=sumlimits_{i=1}^ng(i))。
然后你就要找一个合适的 (f),不难看出可以用 (I*I=d)。
然后 (g*d=varphi*mu*I*I=(varphi*I)*(mu*I)=id*epsilon=id)。
然后就有 (d(1)S(n)=sumlimits_{i=1}^nid(i)-sumlimits_{i=2}^nd(i)S(leftlfloordfrac{n}{i} ight floor)=dfrac{n(n+1)}{2}-sumlimits_{i=2}^nd(i)S(leftlfloordfrac{n}{i} ight floor))
然后 (d(i)) 的前缀和可以数论分块,小于 (n^{frac{2}{3}}) 的预处理前缀和,大于的直接根号求。
然后小小卡个常即可。
代码
#include<map>
#include<cstdio>
#define ll long long
#define mo 1000000007
using namespace std;
const int Maxn = 2000001;
int n, m;
ll d[Maxn + 1], g[Maxn + 1], ans;
int low[Maxn + 1], phi[Maxn + 1], prime[Maxn + 1];
map <int, ll> ans_g;
void init() {//杜教筛的预处理
g[1] = 1; phi[1] = 1; low[1] = 1;
for (int i = 2; i <= Maxn; i++) {
if (!low[i]) phi[i] = i - 1, low[i] = i, prime[++prime[0]] = i, g[i] = i - 2;
for (int j = 1; j <= prime[0] && i * prime[j] <= Maxn; j++) {
if (i % prime[j]) low[i * prime[j]] = prime[j], phi[i * prime[j]] = phi[i] * (prime[j] - 1), g[i * prime[j]] = g[i] * g[prime[j]];
else {
low[i * prime[j]] = low[i] * prime[j], phi[i * prime[j]] = phi[i] * prime[j];
if (low[i] != i) g[i * prime[j]] = g[i / low[i]] * g[low[i] * prime[j]];
else g[i * prime[j]] = phi[i * prime[j]] + phi[i] * (-1);
break;
}
}
}
for (int i = 1; i <= Maxn; i++)
for (int j = 1; i * j <= Maxn; j++)
d[i * j]++;
for (int i = 1; i <= Maxn; i++)
d[i] += d[i - 1], g[i] += g[i - 1];
}
ll sum_d(ll n) {//数论分块
if (n <= Maxn) return d[n];
ll re = 0;
for (ll l = 1, r; l <= n; l = r + 1) {
r = n / (n / l);
re += (r - l + 1) * (n / l);
}
return re;
}
ll sum_g(ll n) {//杜教筛
if (n <= Maxn) return g[n];
if (ans_g[n]) return ans_g[n];
ll re = n * (n + 1) / 2;
for (ll l = 2, r; l <= n; l = r + 1) {
r = n / (n / l);
re -= (sum_d(r) - sum_d(l - 1)) * sum_g(n / l);
}
return ans_g[n] = re;
}
int main() {
// freopen("mesh.in", "r", stdin);
// freopen("mesh.out", "w", stdout);
scanf("%d %d", &n, &m);
init();
for (int l = 1, r; l <= n && l <= m; l = r + 1) {//数论分块
r = min(n / (n / l), m / (m / l));
ans = (ans + 1ll * (n / l) * (m / l) * (sum_g(r) - sum_g(l - 1))) % mo;
}
printf("%lld", ans);
return 0;
}