zoukankan      html  css  js  c++  java
  • TensorFlow

    TensorFlow - 深度学习破解验证码

    简介:验证码主要用于防刷,传统的验证码识别算法一般需要把验证码分割为单个字符,然后逐个识别,如果字符之间相互重叠,传统的算法就然并卵了,本文采用cnn对验证码进行整体识别。 主要涉及:

    • 1.captcha库生成验证码
    • 2.如何将验证码识别问题转化为分类问题
    • 3.可以训练自己的验证码识别模型

    一.安装 captcha 库

    sudo pip install captcha 生成验证码训练数据

    所有的模型训练,数据是王道,本文采用 captcha 库生成验证码,captcha 可以生成语音和图片验证码,我们采用生成图片验证码功能,验证码是由数字、大写字母、小写字母组成(当然你也可以根据自己的需求调整,比如添加一些特殊字符),长度为 4,所以总共有 62^4 种组合验证码。

    验证码生成器

    采用 python 中生成器方式来生成我们的训练数据,这样的好处是,不需要提前生成大量的数据,训练过程中生成数据,并且可以无限生成数据。

    示例代码:

    在 /home/ubuntu 目录下创建源文件 generate_captcha.py,内容可参考:

    示例代码:

    /home/ubuntu/generate_captcha.py

    #!/usr/bin/python
    # -*- coding: utf-8 -*
    
    from captcha.image import ImageCaptcha
    from PIL import Image
    import numpy as np
    import random
    import string
    
    class generateCaptcha():
        def __init__(self,
                     width = 160,#验证码图片的宽
                     height = 60,#验证码图片的高
                     char_num = 4,#验证码字符个数
                     characters = string.digits + string.ascii_uppercase + string.ascii_lowercase):#验证码组成,数字+大写字母+小写字母
            self.width = width
            self.height = height
            self.char_num = char_num
            self.characters = characters
            self.classes = len(characters)
    
        def gen_captcha(self,batch_size = 50):
            X = np.zeros([batch_size,self.height,self.width,1])
            img = np.zeros((self.height,self.width),dtype=np.uint8)
            Y = np.zeros([batch_size,self.char_num,self.classes])
            image = ImageCaptcha(width = self.width,height = self.height)
    
            while True:
                for i in range(batch_size):
                    captcha_str = ''.join(random.sample(self.characters,self.char_num))
                    img = image.generate_image(captcha_str).convert('L')
                    img = np.array(img.getdata())
                    X[i] = np.reshape(img,[self.height,self.width,1])/255.0
                    for j,ch in enumerate(captcha_str):
                        Y[i,j,self.characters.find(ch)] = 1
                Y = np.reshape(Y,(batch_size,self.char_num*self.classes))
                yield X,Y
    
        def decode_captcha(self,y):
            y = np.reshape(y,(len(y),self.char_num,self.classes))
            return ''.join(self.characters[x] for x in np.argmax(y,axis = 2)[0,:])
    
        def get_parameter(self):
            return self.width,self.height,self.char_num,self.characters,self.classes
    
        def gen_test_captcha(self):
            image = ImageCaptcha(width = self.width,height = self.height)
            captcha_str = ''.join(random.sample(self.characters,self.char_num))
            img = image.generate_image(captcha_str)
            img.save(captcha_str + '.jpg')
    

    然后执行:

    cd /home/ubuntu; python import generate_captcha g = generate_captcha.generateCaptcha() g.gen_test_captcha()

    执行结果:

    在 /home/ubuntu 目录下查看生成的验证码,jpg 格式的图片可以点击查看。

    二.验证码识别模型

    将验证码识别问题转化为分类问题,总共 62^4 种类型,采用 4 个 one-hot 编码分别表示 4 个字符取值。

    cnn 验证码识别模型

    3 层隐藏层、2 层全连接层,对每层都进行 dropout。input——>conv——>pool——>dropout——>conv——>pool——>dropout——>conv——>pool——>dropout——>fully connected layer——>dropout——>fully connected layer——>output

    示例代码:

    现在您可以在 /home/ubuntu 目录下创建源文件 captcha_model.py,内容可参考:

    示例代码:

    /home/ubuntu/captcha_model.py

    #!/usr/bin/python
    # -*- coding: utf-8 -*
    
    import tensorflow as tf
    import math
    
    class captchaModel():
        def __init__(self,
                     width = 160,
                     height = 60,
                     char_num = 4,
                     classes = 62):
            self.width = width
            self.height = height
            self.char_num = char_num
            self.classes = classes
    
        def conv2d(self,x, W):
            return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')
    
        def max_pool_2x2(self,x):
            return tf.nn.max_pool(x, ksize=[1, 2, 2, 1],
                                  strides=[1, 2, 2, 1], padding='SAME')
    
        def weight_variable(self,shape):
            initial = tf.truncated_normal(shape, stddev=0.1)
            return tf.Variable(initial)
    
        def bias_variable(self,shape):
            initial = tf.constant(0.1, shape=shape)
            return tf.Variable(initial)
    
        def create_model(self,x_images,keep_prob):
            #first layer
            w_conv1 = self.weight_variable([5, 5, 1, 32])
            b_conv1 = self.bias_variable([32])
            h_conv1 = tf.nn.relu(tf.nn.bias_add(self.conv2d(x_images, w_conv1), b_conv1))
            h_pool1 = self.max_pool_2x2(h_conv1)
            h_dropout1 = tf.nn.dropout(h_pool1,keep_prob)
            conv_width = math.ceil(self.width/2)
            conv_height = math.ceil(self.height/2)
    
            #second layer
            w_conv2 = self.weight_variable([5, 5, 32, 64])
            b_conv2 = self.bias_variable([64])
            h_conv2 = tf.nn.relu(tf.nn.bias_add(self.conv2d(h_dropout1, w_conv2), b_conv2))
            h_pool2 = self.max_pool_2x2(h_conv2)
            h_dropout2 = tf.nn.dropout(h_pool2,keep_prob)
            conv_width = math.ceil(conv_width/2)
            conv_height = math.ceil(conv_height/2)
    
            #third layer
            w_conv3 = self.weight_variable([5, 5, 64, 64])
            b_conv3 = self.bias_variable([64])
            h_conv3 = tf.nn.relu(tf.nn.bias_add(self.conv2d(h_dropout2, w_conv3), b_conv3))
            h_pool3 = self.max_pool_2x2(h_conv3)
            h_dropout3 = tf.nn.dropout(h_pool3,keep_prob)
            conv_width = math.ceil(conv_width/2)
            conv_height = math.ceil(conv_height/2)
    
            #first fully layer
            conv_width = int(conv_width)
            conv_height = int(conv_height)
            w_fc1 = self.weight_variable([64*conv_width*conv_height,1024])
            b_fc1 = self.bias_variable([1024])
            h_dropout3_flat = tf.reshape(h_dropout3,[-1,64*conv_width*conv_height])
            h_fc1 = tf.nn.relu(tf.nn.bias_add(tf.matmul(h_dropout3_flat, w_fc1), b_fc1))
            h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)
    
            #second fully layer
            w_fc2 = self.weight_variable([1024,self.char_num*self.classes])
            b_fc2 = self.bias_variable([self.char_num*self.classes])
            y_conv = tf.add(tf.matmul(h_fc1_drop, w_fc2), b_fc2)
    
            return y_conv
    

    训练 cnn 验证码识别模型

    每批次采用 64 个训练样本,每 100 次循环采用 100 个测试样本检查识别准确度,当准确度大于 99% 时,训练结束,采用 GPU 需要 5-6 个小时左右,CPU 大概需要 20 个小时左右。

    注:作为实验,你可以通过调整 train_captcha.py 文件中 if acc > 0.99: 代码行的准确度节省训练时间(比如将 0.99 为 0.01);同时,我们已经通过长时间的训练得到了一个训练集,可以通过如下命令将训练集下载到本地。

    wget http://tensorflow-1253902462.cosgz.myqcloud.com/captcha/capcha_model.zip unzip capcha_model.zip

    现在可以在 /home/ubuntu 目录下创建源文件 train_captcha.py,内容可参考:

    示例代码:/home/ubuntu/train_captcha.py

    #!/usr/bin/python
    
    import tensorflow as tf
    import numpy as np
    import string
    import generate_captcha
    import captcha_model
    
    if __name__ == '__main__':
        captcha = generate_captcha.generateCaptcha()
        width,height,char_num,characters,classes = captcha.get_parameter()
    
        x = tf.placeholder(tf.float32, [None, height,width,1])
        y_ = tf.placeholder(tf.float32, [None, char_num*classes])
        keep_prob = tf.placeholder(tf.float32)
    
        model = captcha_model.captchaModel(width,height,char_num,classes)
        y_conv = model.create_model(x,keep_prob)
        cross_entropy = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(labels=y_,logits=y_conv))
        train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
    
        predict = tf.reshape(y_conv, [-1,char_num, classes])
        real = tf.reshape(y_,[-1,char_num, classes])
        correct_prediction = tf.equal(tf.argmax(predict,2), tf.argmax(real,2))
        correct_prediction = tf.cast(correct_prediction, tf.float32)
        accuracy = tf.reduce_mean(correct_prediction)
    
        saver = tf.train.Saver()
        with tf.Session() as sess:
            sess.run(tf.global_variables_initializer())
            step = 0
            while True:
                batch_x,batch_y = next(captcha.gen_captcha(64))
                _,loss = sess.run([train_step,cross_entropy],feed_dict={x: batch_x, y_: batch_y, keep_prob: 0.75})
                print ('step:%d,loss:%f' % (step,loss))
                if step % 100 == 0:
                    batch_x_test,batch_y_test = next(captcha.gen_captcha(100))
                    acc = sess.run(accuracy, feed_dict={x: batch_x_test, y_: batch_y_test, keep_prob: 1.})
                    print ('###############################################step:%d,accuracy:%f' % (step,acc))
                    if acc > 0.99:
                        saver.save(sess,"capcha_model.ckpt")
                        break
                step += 1
    

    然后执行:

    cd /home/ubuntu; python train_captcha.py

    执行结果:

    step:75173,loss:0.010555
    step:75174,loss:0.009410
    step:75175,loss:0.009978
    step:75176,loss:0.008089
    step:75177,loss:0.009949
    step:75178,loss:0.010126
    step:75179,loss:0.009584
    step:75180,loss:0.012272
    step:75181,loss:0.010157
    step:75182,loss:0.009529
    step:75183,loss:0.007636
    step:75184,loss:0.009058
    step:75185,loss:0.010061
    step:75186,loss:0.009941
    step:75187,loss:0.009339
    step:75188,loss:0.009685
    step:75189,loss:0.009879
    step:75190,loss:0.007799
    step:75191,loss:0.010866
    step:75192,loss:0.009838
    step:75193,loss:0.010931
    step:75194,loss:0.012859
    step:75195,loss:0.008747
    step:75196,loss:0.009147
    step:75197,loss:0.009351
    step:75198,loss:0.009746
    step:75199,loss:0.010014
    step:75200,loss:0.009024
    ###############################################step:75200,accuracy:0.992500
    

    三.测试 cnn 验证码识别模型

    示例代码:

    现在您可以在 /home/ubuntu 目录下创建源文件 predict_captcha.py,内容可参考:

    示例代码:/home/ubuntu/predict_captcha.py

    #!/usr/bin/python
    
    from PIL import Image, ImageFilter
    import tensorflow as tf
    import numpy as np
    import string
    import sys
    import generate_captcha
    import captcha_model
    
    if __name__ == '__main__':
        captcha = generate_captcha.generateCaptcha()
        width,height,char_num,characters,classes = captcha.get_parameter()
    
        gray_image = Image.open(sys.argv[1]).convert('L')
        img = np.array(gray_image.getdata())
        test_x = np.reshape(img,[height,width,1])/255.0
        x = tf.placeholder(tf.float32, [None, height,width,1])
        keep_prob = tf.placeholder(tf.float32)
    
        model = captcha_model.captchaModel(width,height,char_num,classes)
        y_conv = model.create_model(x,keep_prob)
        predict = tf.argmax(tf.reshape(y_conv, [-1,char_num, classes]),2)
        init_op = tf.global_variables_initializer()
        saver = tf.train.Saver()
        gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.95)
        with tf.Session(config=tf.ConfigProto(log_device_placement=False,gpu_options=gpu_options)) as sess:
            sess.run(init_op)
            saver.restore(sess, "capcha_model.ckpt")
            pre_list =  sess.run(predict,feed_dict={x: [test_x], keep_prob: 1})
            for i in pre_list:
                s = ''
                for j in i:
                    s += characters[j]
                print s
    

    然后执行:

    cd /home/ubuntu; python predict_captcha.py Kz2J.jpg

    执行结果:

    Kz2J

    注:因为实验时间的限制,你可能调整了准确度导致执行结果不符合预期,属于正常情况。

    在训练时间足够长的情况下,你可以采用验证码生成器生成测试数据,cnn 训练出来的验证码识别模型还是很强大的,大小写的 z 都可以区分,甚至有时候人都无法区分,该模型也可以正确的识别。

  • 相关阅读:
    Linux 定时任务
    VIM快速使用
    ulimit 命令
    PG语句
    linux下的PGSQL安装步骤
    linux下安装mysql 5.5和5.6.32
    linux下安装达梦数据库(DM8)x86版本
    redis配置
    sql server 2008安装
    linux下安装部署oracle
  • 原文地址:https://www.cnblogs.com/SeekHit/p/7806953.html
Copyright © 2011-2022 走看看