和SCOI2018形成鲜明对比……
板子题+大力卡常。
作为大常数选手的我被卡得瑟瑟发抖。
发现自己板子还是不熟,常数还是太大,智障错误还是太多
D1T1
BSGS
//Serene #include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #include<cmath> #include<map> using namespace std; #define ll long long #define db double #define For(i,a,b) for(int i=(a);i<=(b);++i) #define Rep(i,a,b) for(int i=(a);i>=(b);--i) ll n,A,B,mod,g,f,sz,a,b; map<ll,int> G; char cc; ll ff; template<typename T>void read(T& aa) { aa=0;cc=getchar();ff=1; while((cc<'0'||cc>'9')&&cc!='-') cc=getchar(); if(cc=='-') ff=-1,cc=getchar(); while(cc>='0'&&cc<='9') aa=aa*10+cc-'0',cc=getchar(); aa*=ff; } ll qp(ll x,ll k) { ll rs=1; while(k) { if(k&1) rs=rs*x%mod; k>>=1; x=x*x%mod; } return rs; } ll get_ans(ll x) { if(x==1) return 0; For(i,0,mod) { if(x==1) return i*sz; if(G[x]) return i*sz+G[x]; x=x*f%mod; } } int main() { freopen("crack.in","r",stdin); freopen("crack.out","w",stdout); read(g); read(mod); sz=sqrt(mod); ll x=1; For(i,1,sz) { x=x*g%mod; if(!G[x]) G[x]=i; } f=qp(x,mod-2); read(n); For(i,1,n) { read(A); read(B); a=get_ans(A); b=get_ans(B); printf("%lld ",qp(g,a*b)); } return 0; }
D1T2
Matrix Tree定理
今天早读的时候在打这个板子,然后WA了还没调出来,又遇到这道题,和早上WA的地方一模一样
//Serene #include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #include<cmath> using namespace std; #define ll long long #define db double #define For(i,a,b) for(int i=(a);i<=(b);++i) #define Rep(i,a,b) for(int i=(a);i>=(b);--i) const ll mod=10007,maxn=500+7,maxm=maxn*maxn; int n,m,id[maxn],tot; ll D[maxn][maxn]; char cc; ll ff; template<typename T>void read(T& aa) { aa=0;cc=getchar();ff=1; while((cc<'0'||cc>'9')&&cc!='-') cc=getchar(); if(cc=='-') ff=-1,cc=getchar(); while(cc>='0'&&cc<='9') aa=aa*10+cc-'0',cc=getchar(); aa*=ff; } int fir[maxn],nxt[maxm],to[maxm],e=0; void add(int x,int y) { to[++e]=y;nxt[e]=fir[x];fir[x]=e; } bool vis[maxn]; void s(int pos) { if(vis[pos]) return; vis[pos]=1; for(int y=fir[pos];y;y=nxt[y]) s(to[y]); } void insert(int x,int y) { D[x][y]--; // D[y][x]--; D[y][y]++; } ll Mtx(int n) { ll a,b,r,rs=1,fl=0; For(i,1,n) For(j,1,n) D[i][j]=(D[i][j]+mod)%mod; For(i,1,n) { For(j,i+1,n) if(D[j][i]) { a=D[i][i]; b=D[j][i]; while(b) { r=a/b; a=a%b; swap(a,b); For(k,i,n) D[i][k]=(D[i][k]-D[j][k]*r%mod+mod)%mod; swap(D[i],D[j]); fl^=1; } } if(D[i][i]==0) return 0; rs=rs*D[i][i]%mod; } if(fl) rs=(mod-rs)%mod; return rs; } int main() { freopen("sns.in","r",stdin); freopen("sns.out","w",stdout); read(n); read(m); int x,y; For(i,1,m) { read(x); read(y); add(y,x); } s(1); Rep(i,n,1) if(vis[i]) id[i]=++tot; For(i,1,n) if(vis[i]) for(y=fir[i];y;y=nxt[y]) if(vis[to[y]]) insert(id[i],id[to[y]]); printf("%lld ",Mtx(tot-1)); return 0; }
D1T3
不晓得正解是什么,我枚举1的个数然后用组合数直接算,被卡常卡得我妈都不认识了
然后用llj的优化方法,线筛预处理i^a和i^b,还是卡常。
//Serene #include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #include<cmath> using namespace std; #define ll long long #define db double #define For(i,a,b) for(register int i=(a);i<=(b);++i) #define Rep(i,a,b) for(register int i=(a);i>=(b);--i) const int maxn=1e7+7; ll n,W,a,b,mod,mi[maxn],inv[maxn],sum[maxn],p1[maxn],p2[maxn],ans,x,y; ll num[maxn]; char cc; ll ff; template<typename T>void read(T& aa) { aa=0;cc=getchar();ff=1; while((cc<'0'||cc>'9')&&cc!='-') cc=getchar(); if(cc=='-') ff=-1,cc=getchar(); while(cc>='0'&&cc<='9') aa=aa*10+cc-'0',cc=getchar(); aa*=ff; } inline ll qp(ll x,ll k) { ll rs=1; while(k) { if(k&1) rs=rs*x%mod; k>>=1; x=x*x%mod; } return rs; } int prime[maxn],totp; bool ok[maxn]; inline void get_p() { p1[0]=a==0; p2[0]=b==0; p1[1]=p2[1]=1; For(i,2,W) { if(!ok[i]) { p1[i]=qp(i,a); p2[i]=qp(i,b); prime[++totp]=i; } For(j,1,totp) { if(prime[j]*i>W) break; ok[i*prime[j]]=1; p1[i*prime[j]]=p1[i]*p1[prime[j]]%mod; p2[i*prime[j]]=p2[i]*p2[prime[j]]%mod; if(i%prime[j]==0) break; } } } inline ll C(ll n,ll m) { if(sum[n]-sum[m]-sum[n-m]>0) return 0; return mi[n]*inv[m]%mod*inv[n-m]%mod; } int main() { freopen("seq.in","r",stdin); freopen("seq.out","w",stdout); read(n); read(a); read(b); read(mod); W=n+3; get_p(); // cerr<<clock()<<" "; mi[0]=1; x=mod; while(x<=W) num[x]=1,x+=mod; For(i,1,W) { if(num[i]) sum[i]=sum[i/mod]+1,num[i]=num[i/mod]; else num[i]=i; mi[i]=mi[i-1]*num[i]%mod; } For(i,1,W) sum[i]+=sum[i-1]; inv[W]=qp(mi[W],mod-2); Rep(i,W,1) inv[i-1]=inv[i]*num[i]%mod; // cerr<<clock()<<" "; For(i,0,(n+1)>>1) {//tot of 1 x=n-i; //tot of 0 y=x-(i-1); //remain of 0 ans+=p1[x]*p2[i]%mod*C(y+i,y)%mod; } printf("%lld ",ans%mod); // cerr<<clock()<<" "; return 0; }
D2T1
状压dp,我的记忆化搜索可以被卡60分的常?
//Serene #include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #include<cmath> using namespace std; #define ll long long #define db double #define For(i,a,b) for(int i=(a);i<=(b);++i) #define Rep(i,a,b) for(int i=(a);i>=(b);--i) const int maxn=23,maxt=(1<<19)+7; const ll mod=1e8+7; ll n,W,f[maxt][maxn],nd[maxn][maxn],cnt[maxt],ans; char cc; ll ff; template<typename T>void read(T& aa) { aa=0;cc=getchar();ff=1; while((cc<'0'||cc>'9')&&cc!='-') cc=getchar(); if(cc=='-') ff=-1,cc=getchar(); while(cc>='0'&&cc<='9') aa=aa*10+cc-'0',cc=getchar(); aa*=ff; } struct Xl{ ll x,y; Xl(db x=0.,db y=0.):x(x),y(y){} Xl operator + (const Xl& b) const{return Xl(x+b.x,y+b.y);} Xl operator - (const Xl& b) const{return Xl(x-b.x,y-b.y);} }p[maxn]; ll X_(const Xl& a,const Xl& b) {return a.x*b.y-a.y*b.x;} ll D_(const Xl& a,const Xl& b) {return a.x*b.x+a.y*b.y;} bool onit(const Xl& o,const Xl& a,const Xl& b) { if(X_(o-a,b-a)!=0) return 0; if(D_(o-a,b-a)<0) return 0; if(D_(o-b,a-b)<0) return 0; return 1; } int main() { freopen("android.in","r",stdin); freopen("android.out","w",stdout); read(n); W=(1<<n)-1; ll x,y; For(i,1,n) { read(x); read(y); p[i]=Xl(x,y); } For(i,1,n) For(j,i+1,n) { For(k,1,n) if(k!=i&&k!=j) if(onit(p[k],p[i],p[j])) nd[i][j]|=(1<<k-1); nd[j][i]=nd[i][j]; } For(i,1,W) cnt[i]=cnt[i-(i&-i)]+1; For(i,1,n) f[1<<i-1][i]=1; For(i,0,W) For(j,1,n) if(f[i][j]%=mod) { For(k,1,n) if((i&(1<<k-1))==0&&(nd[j][k]&i)==nd[j][k]) f[i|(1<<k-1)][k]+=f[i][j]; } For(i,0,W) if(cnt[i]>3) For(j,1,n) ans+=f[i][j]; printf("%lld ",ans%mod); // cerr<<clock()<<" "; return 0; }
D2T2
家里有九连环,总觉得自己手速太慢,思考过这个问题,但是当时没思考出来(毕竟当时还没学OI)。
打表可知:
i为奇数的时候,f[i]=f[i-1]<<1|1
i为偶数的时候,f[i]=f[i-1]<<1
需要高精,似乎Achen被卡常了
我场上写输出的时候0的个数不太对,WA惨了
//Serene #include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #include<cmath> using namespace std; #define ll long long #define db double #define For(i,a,b) for(int i=(a);i<=(b);++i) #define Rep(i,a,b) for(int i=(a);i>=(b);--i) const int maxn=2000+7,maxt=103; ll Td,n,now[maxn],ans[maxt][maxn],W=1e18,q[maxt]; char cc; ll ff; template<typename T>void read(T& aa) { aa=0;cc=getchar();ff=1; while((cc<'0'||cc>'9')&&cc!='-') cc=getchar(); if(cc=='-') ff=-1,cc=getchar(); while(cc>='0'&&cc<='9') aa=aa*10+cc-'0',cc=getchar(); aa*=ff; } void qc() { For(i,1,now[0]) now[i]<<=1; For(i,1,now[0]) while(now[i]>=W) now[i]-=W,now[i+1]++; if(now[now[0]+1]) now[0]++; } void qj() { now[1]++; ll pos=1; while(now[pos]>=W) now[pos]-=W,now[++pos]++; now[0]=max(now[0],pos); } void print_ans(ll* now) { printf("%lld",now[now[0]]); Rep(i,now[0]-1,1) printf("%018lld",now[i]); printf(" "); } int main() { freopen("baguenaudier.in","r",stdin); freopen("baguenaudier.out","w",stdout); read(Td); For(i,1,Td) read(q[i]),q[0]=max(q[0],q[i]); n=q[0]; memset(now,0,sizeof(now)); now[0]=1; For(i,1,n) { qc(); if(i&1) qj(); For(j,1,Td) if(q[j]==i) memcpy(ans[j],now,sizeof(now)); } For(i,1,Td) print_ans(ans[i]); // cerr<<clock()<<" "; return 0; }
D2T3
莫队
一开始以为每次查询的k互不相同,要动态维护线性基,所以写了一个回滚莫队……
然后懒得改成普通莫队了
//Serene #include<algorithm> #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #include<cmath> using namespace std; #define ll long long #define db double #define For(i,a,b) for(int i=(a);i<=(b);++i) #define Rep(i,a,b) for(int i=(a);i>=(b);--i) const int maxn=5e5+7; ll n,m,K,a[maxn],ans[maxn],sz; char cc; ll ff; template<typename T>void read(T& aa) { aa=0;cc=getchar();ff=1; while((cc<'0'||cc>'9')&&cc!='-') cc=getchar(); if(cc=='-') ff=-1,cc=getchar(); while(cc>='0'&&cc<='9') aa=aa*10+cc-'0',cc=getchar(); aa*=ff; } int id(int x) {return x/sz;} struct Ask{ int l,r,qid; Ask(){} Ask(int l,int r,int qid):l(l),r(r),qid(qid){} bool operator < (const Ask& b) const{return id(l)==id(b.l)? r<b.r:l<b.l;} }ask[maxn]; int tot; ll sum[maxn],now,nw; int mdf[maxn],cnt; void clear() { while(cnt) --sum[mdf[cnt--]]; now-=nw; nw=0; } void clear_all() { memset(sum,0,sizeof(sum)); cnt=now=nw=0; } void insert(int x,int o) { if(o) mdf[++cnt]=x,nw+=sum[x^K]; now+=sum[x^K]; ++sum[x]; } void solve(int l,int r,int p) { For(i,l,r) insert(a[i],1); ans[p]=now; clear(); } int main() { freopen("xor.in","r",stdin); freopen("xor.out","w",stdout); read(n); read(m); read(K); For(i,1,n) read(a[i]),a[i]^=a[i-1]; sz=sqrt(n); int l,r; For(i,1,m) { read(l); read(r); if(r-l<=2*sz) solve(l-1,r,i); else ask[++tot]=Ask(l-1,r,i); } sort(ask+1,ask+tot+1); int last=1,ld,rd; For(i,1,tot) { if(i==tot||id(ask[i].l)!=id(ask[i+1].l)) { clear_all(); ld=rd=(id(ask[i].l)+1)*sz-1; For(j,last,i) { clear(); For(k,rd+1,ask[j].r) insert(a[k],0); rd=ask[j].r; Rep(k,ld,ask[j].l) insert(a[k],1); ans[ask[j].qid]=now; } last=i+1; } } For(i,1,m) printf("%lld ",ans[i]); return 0; }