zoukankan      html  css  js  c++  java
  • elasticsearch 7.7 配置文件:elasticsearch.yml

    # ======================== Elasticsearch Configuration =========================
    #
    # NOTE: Elasticsearch comes with reasonable defaults for most settings.
    #       Before you set out to tweak and tune the configuration, make sure you
    #       understand what are you trying to accomplish and the consequences.
    #
    # The primary way of configuring a node is via this file. This template lists
    # the most important settings you may want to configure for a production cluster.
    #
    # Please consult the documentation for further information on configuration options:
    # https://www.elastic.co/guide/en/elasticsearch/reference/index.html
    #
    # ---------------------------------- Cluster -----------------------------------
    #
    # Use a descriptive name for your cluster:
    #
    cluster.name: test
    #
    # ------------------------------------ Node ------------------------------------
    #
    # Use a descriptive name for the node:
    #
    node.name: ${HOSTNAME}
    #
    # Add custom attributes to the node:
    #
    #node.attr.rack: r1
    #
    # ----------------------------------- Paths ------------------------------------
    #
    # Path to directory where to store the data (separate multiple locations by comma):
    #
    path.data: /data/www/elasticsearch
    #
    # Path to log files:
    #
    path.logs: /log/elasticsearch
    #
    # ----------------------------------- Memory -----------------------------------
    #
    # Lock the memory on startup:
    #
    bootstrap.memory_lock: true
    #
    # Make sure that the heap size is set to about half the memory available
    # on the system and that the owner of the process is allowed to use this
    # limit.
    #
    # Elasticsearch performs poorly when the system is swapping the memory.
    #
    processors: 32
    # 一般是当前cpu的2倍
    thread_pool:
        write:
            size: 32
            # 默认是available processors,由17调整到32,一般是当前cpu的2倍
            queue_size: 1000000
            # 由4000调整大小为1000000
        search:
            size: 128
            queue_size: 5000
            min_queue_size: 1000
            max_queue_size: 10000
            auto_queue_frame_size: 2000
            target_response_time: 1s
    
    # ---------------------------------- Network -----------------------------------
    #
    # Set the bind address to a specific IP (IPv4 or IPv6):
    #
    network.host: 0.0.0.0
    #
    # Set a custom port for HTTP:
    #
    http.port: 9200
    #
    # For more information, consult the network module documentation.
    #
    # --------------------------------- Discovery ----------------------------------
    #
    # Pass an initial list of hosts to perform discovery when this node is started:
    # The default list of hosts is ["127.0.0.1", "[::1]"]
    #
    discovery.seed_hosts: ["172.16.13.249", "172.16.13.250", "172.16.13.253"]
    #
    # Bootstrap the cluster using an initial set of master-eligible nodes:
    #
    cluster.initial_master_nodes: ["172.16.13.249"]
    #
    # For more information, consult the discovery and cluster formation module documentation.
    #
    # ---------------------------------- Gateway -----------------------------------
    #
    # Block initial recovery after a full cluster restart until N nodes are started:
    #
    #gateway.recover_after_nodes: 3
    #
    # For more information, consult the gateway module documentation.
    #
    # ---------------------------------- Various -----------------------------------
    #
    # Require explicit names when deleting indices:
    
    http.cors.enabled: true
    http.cors.allow-origin: "*"
    action.destructive_requires_name: true
    action.auto_create_index:  "*"
    xpack.security.enabled: false
    xpack.monitoring.enabled: true
    xpack.graph.enabled: false
    xpack.watcher.enabled: false
    xpack.ml.enabled: false
    
  • 相关阅读:
    梯度提升树(GBDT)原理小结
    scikit-learn Adaboost类库使用小结
    集成学习之Adaboost算法原理小结
    集成学习原理小结
    支持向量机高斯核调参小结
    scikit-learn 支持向量机算法库使用小结
    支持向量机原理(五)线性支持回归
    支持向量机原理(四)SMO算法原理
    支持向量机原理(三)线性不可分支持向量机与核函数
    支持向量机原理(二) 线性支持向量机的软间隔最大化模型
  • 原文地址:https://www.cnblogs.com/Serverlessops/p/13700900.html
Copyright © 2011-2022 走看看