zoukankan      html  css  js  c++  java
  • Balanced Lineup POJ

    Balanced Lineup  POJ - 3264 

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2.. N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2.. NQ+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to Binclusive.

    Output

    Lines 1.. Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    解一:线段树
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    #include <string>
    #include <vector>
    #include <map>
    #include <set>
    #include <list>
    #include <deque>
    #include <queue>
    #include <stack>
    #include <cstdlib>
    #include <cstdio>
    #include <cmath>
    #include <iomanip>
    #define ull unsigned long long
    #define ll long long
    #define pb push_back
    #define mem(sum,x) memset(sum,x,sizeof(sum))
    #define rep(i,start,end) for(int i=start;i<=end;i++)
    #define per(i,end,start) for(int i=end;i>=start;i--)
    #define tle ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
    using namespace std;
    const int mod = 998244353;
    const int mxn = 1e5 +7;
    int _,n,m,t,u,v,ans,cnt,ok,lim;
    ll w[mxn] , cost[mxn] , dp[mxn] , far[mxn] , siz[mxn];
    double num[mxn];
    #define lc now<<1
    #define rc now<<1|1
    string str ;
    struct node {int l,r,val,lazy,mx,mn;}p[mxn<<4];
    void pushup(int now){
        /// p[now].val = p[lc].val+p[rc].val;
        p[now].mx = max(p[lc].mx , p[rc].mx);
        p[now].mn = min(p[lc].mn , p[rc].mn);
    }
    void pushdown(int now)
    {
        if(p[now].lazy)
        {
            p[lc].lazy = p[rc].lazy = p[now].lazy;
            p[lc].val = p[now].lazy*(p[lc].r-p[lc].l+1);
            p[rc].val = p[now].lazy*(p[rc].r-p[rc].l+1);
            p[now].lazy = 0 ;
        }
    }
    void build(int l,int r,int now)
    {
        p[now].l = l,p[now].r = r ;/// p[now].lazy = 0 ;
        if(l==r){
            /// cin>>p[now].val;
            scanf("%d",&p[now].val);
            p[now].mx = p[now].mn = p[now].val ;
            return ;
        }
        int mid = (l+r)>>1;
        build(l,mid,lc);build(mid+1,r,rc);pushup(now);
    }
    void ask(int l,int r,int now)
    {
        if(l<=p[now].l && r>=p[now].r){
            u = max(u,p[now].mx);
            v = min(v,p[now].mn);
            return ;
        }
        int mid = (p[now].l+p[now].r)>>1;
        if(l<=mid) ask(l,r,lc);
        if(r>mid) ask(l,r,rc);
    }
    int main()
    {
        tle;
        ///while(cin>>n>>m)
        while(~scanf("%d %d",&n,&m))
        {
            build(1,n,1);
            int l,r;
            while(m--)
            {
                /// cin>>l>>r;
                scanf("%d %d",&l,&r);
                u = -1 , v = mod ;ask(l,r,1);
                printf("%d
    ",u-v);
                /// cout<<u-v<<endl;
            }
        }
    }

    解二:RMQ
     1 #include <iostream>
     2 #include <algorithm>
     3 #include <cstring>
     4 #include <string>
     5 #include <vector>
     6 #include <map>
     7 #include <set>
     8 #include <list>
     9 #include <deque>
    10 #include <queue>
    11 #include <stack>
    12 #include <cstdlib>
    13 #include <cstdio>
    14 #include <cmath>
    15 #include <iomanip>
    16 #define ull unsigned long long
    17 #define ll long long
    18 #define pb push_back
    19 #define mem(sum,x) memset(sum,x,sizeof(sum))
    20 #define rep(i,start,end) for(int i=start;i<=end;i++)
    21 #define per(i,end,start) for(int i=end;i>=start;i--)
    22 #define tle ios::sync_with_stdio(false); cin.tie(0); cout.tie(0);
    23 using namespace std;
    24 const int mod = 998244353;
    25 const int mxn = 1e5 +7;
    26 int _,n,m,t,u,v,ans,cnt,ok,lim;
    27 ll w[mxn] , cost[mxn] ,  far[mxn] , siz[mxn];
    28 double num[mxn];
    29 #define lc now<<1
    30 #define rc now<<1|1
    31 string str ;
    32 struct node {int l,r,val,lazy,mx,mn;}p[mxn<<4];
    33 void pushup(int now){
    34     /// p[now].val = p[lc].val+p[rc].val;
    35     p[now].mx = max(p[lc].mx , p[rc].mx);
    36     p[now].mn = min(p[lc].mn , p[rc].mn);
    37 }
    38 void pushdown(int now)
    39 {
    40     if(p[now].lazy)
    41     {
    42         p[lc].lazy = p[rc].lazy = p[now].lazy;
    43         p[lc].val = p[now].lazy*(p[lc].r-p[lc].l+1);
    44         p[rc].val = p[now].lazy*(p[rc].r-p[rc].l+1);
    45         p[now].lazy = 0 ;
    46     }
    47 }
    48 void build(int l,int r,int now)
    49 {
    50     p[now].l = l,p[now].r = r ;/// p[now].lazy = 0 ;
    51     if(l==r){
    52         /// cin>>p[now].val;
    53         scanf("%d",&p[now].val);
    54         return ;
    55     }
    56     int mid = (l+r)>>1;
    57     build(l,mid,lc);build(mid+1,r,rc);pushup(now);
    58 }
    59 int dp[mxn][20][2];
    60 void rmq()
    61 {
    62     for(int j=1;j<=log((double)n)/log(2.0)+1;j++)
    63     {
    64         for(int i=1;i+(1<<j)-1<=n;i++)
    65         {
    66             dp[i][j][0] = max(dp[i][j-1][0] , dp[i+(1<<(j-1))][j-1][0] );
    67             dp[i][j][1] = min(dp[i][j-1][1] , dp[i+(1<<(j-1))][j-1][1] );
    68         }
    69     }
    70 }
    71 int main()
    72 {
    73     tle;
    74     while(~scanf("%d %d",&n,&m))
    75     {
    76         for(int i=1,k;i<=n;i++)
    77             scanf("%d",&k) ,dp[i][0][0] = dp[i][0][1] = k ;
    78         rmq();
    79         int l,r;
    80         while(m--)
    81         {
    82             /// cin>>l>>r;
    83             scanf("%d %d",&l,&r);
    84             int k = log((double)(r-l+1))/log(2.0);
    85             printf("%d
    ", max(dp[l][k][0],dp[r-(1<<k)+1][k][0]) - min(dp[l][k][1],dp[r-(1<<k)+1][k][1]) );
    86             /// cout<<u-v<<endl;
    87         }
    88     }
    89 }
    所遇皆星河
  • 相关阅读:
    ES6---async, await, promise 综合例子
    ES6---Promise应用: async, await
    ES6---Promise 4: 更多案例
    掌握这两个技术点,你可以玩转AppCan前端开发
    AppCan4.0:开发者要做有价值的APP
    以“掌上东航”为例,论混合开发在企业级项目中的实践
    基于AppCan MAS系统,如何轻松实现移动应用数据服务?
    正益移动王国春:布局在是与不是之间
    【TOP10 APP】这些应用成了AppCan千人大会的焦点
    我爱我家:我为什么选择AppCan?
  • 原文地址:https://www.cnblogs.com/Shallow-dream/p/12828834.html
Copyright © 2011-2022 走看看