zoukankan      html  css  js  c++  java
  • 一种城市居住区划配套设施完备情况的评估模型

    一种城市居住区划配套设施完备情况的评估模型
    An Evaluation Model for How a City's Residential Area is Equiped with Some Non-trival Facilities

    摘要: 本文提出了一种基于网络地图数据库,使用 K-means 算法与可视化技术的智慧城市评估模型。该模型可以用于评估城市居住区划的相关设施配套情况。我们具体地以南京市与苏州市为例,比较评价了两城市的居住区划的科教文化场所配备情况。

    Abstrat: The essay introduced an evaluation model based on web map data base, K-means algorithm and visualization techniques, which can be quantitatively useful when inspecting how a city's residential area is equiped with some non-trival facilities. For example, we apply this method to compare Nanjing and Suzhou on how their residential area is equiped with science, education and culture places.

    正文

    ​ 本文的模型根据高德地图提供的兴趣点(Point of Interests, POI)数据库接口建立。我们首先采集城市的商务住宅位置信息,对这些信息进行聚类分析,就能大体上得到城市的实际居住区划模式。对原始数据进行聚类分析的意义在于,若城市某个地带有零星几处孤立的住宅公寓,其相关配套设施情况不会影响城市总体水平。而考虑这零星几处的住宅公寓再多一栋,再多两栋呢?这里就涉及到一个边界不清的量变与质变问题。因此我们采用了机器学习的手段进行聚类分析,就能有效地处理这一问题。
    本文提出了一种基于网络地图数据库,使用 K-means 算法与可视化技术的智慧城市评估模型。该模型可以用于评估城市居住区划的相关设施配套情况。我们具体地以南京市与苏州市为例,比较评价了两城市的居住区划的科教文化场所配备情况。
    ​ 接着,我们可以考虑科教文化场所等配套设施的情况。需要特别注意的是,这些配套设施未必只服务于某个特定的居住区,而恰恰可能有相当广的辐射范围。于是,本文主张用两个指标评估城市居住区总体的设施配套情况。第一个指标,是单独对设施点进行聚落分析,再考虑设施点聚落与居住区聚落的中心距离;第二个指标,是将设施点与居住区点数据糅合之后进行聚落分析,再考虑各个聚落的设施点占比。接下来本文将说明这两个指标的意义与合理性。

    ​ 在实践上,我们首先通过 Python 语言解析数据库 JSON 文件,并将采集到的数据组织在一个向量结构中。又使用 C++ 语言实现了一个并发式计算的 K-means 算法(在效率上远优于其他语言提供的标准算法),用于城市功能区划的聚类分析与中心抽象。基于这个过程得到的结果,本文接着给出了直观的可视化表示方法,又进一步使用分析了上文提到的数值指标。

    ​ 本文提供的模型以 K-means 算法为主体。抽象地讲,K-means 算法研究一个这样的问题:给定 (n) 个线性代数意义上的点 (P_1, dots, P_n),按距离远近将这些点分类到 (k) 个不同的聚类中去。我们规定 (P_i, P_j) 两点间的距离为对应向量的模长 (||v||), (v = P_i - P_j)

    ​ 在本文的模型中,这里的点也就是高德地图提供的 POI,点的坐标就定义成数据库提供的经纬度信息。在这个意义下,一个首要的问题就是如何定义向量的模长。经纬度在本质上即地球所在的球坐标系中的前两坐标,因此我们简化地将向量模长定义为海平高度球面上的弧长。本文采用半正矢公式(Haversine Formula)进行计算:

    ​ 首先引入半正矢函数 (hav( heta) = frac{1-cos heta}{2} = sin^2(frac{ heta}{2}))

    ​ 半正矢公式指出:考虑将经纬度坐标分别为 ((varphi_1, heta_1), (varphi_2, heta_2)) 的两点,有

    [hav(frac{d}{R}) = hav(varphi_2-varphi_1)+cosvarphi_1 cosvarphi_2cdot hav( heta_2- heta_1) ]

    ​ 其中, (d) 即所求弧长; (R) 是球面高度,这里我们取海平面地球半径。

    ​ 为了便于计算,我们可以将此式化为:

    [d = 2Rarcsin(sqrt{sin^2{(frac{varphi_2-varphi_1}{2})}} + cosvarphi_1 cosvarphi_2cdot sin^2(frac{ heta_2- heta_1}{2})) ]

    ​ 完成了这项工作,我们执行如下的 K-means 完成聚类分析:

    ​ 首先在线性空间内随机地取一系列点 (mu_1, dots, mu_k) 作为数据点聚落的中心点,接下来:

    1. 对于每一个 (i),计算 (k = arg min_j ||P_i - mu_j||),并拟将点 (P_i) 归于 (mu_k) 所代表的聚落中去。

    2. 接着考虑更新每个聚落的中心点,具体地,对于每个聚类 (j) 中的点 (P_{v_1}, dots, P_{v_{L_j}}),其中 (L_j) 是该聚类中数据点的个数。我们取新的中心点为:

      [mu_j = left( sum_{k=1}^{L_j} P_{v_k} ight) igg/ L_j ]

      在笛卡尔坐标系中,这一过程当然是求取各个点的算数平均的过程,也就是找到一个到所有点的距离均等的聚落“重心”。那么在球坐标系中,我们需要如何定义 (sum) 的符号含义,才能达到相同的效果呢?容易证明,我们只需简单的取 ((varphi_1 + varphi_2, heta_1 + heta_2) = (varphi_1, heta_1) + (varphi_2, heta_2)) 即可。

    ​ 如果新的中心点在计算意义上与旧中心点重合,则算法结束,否则迭代执行 1 过程。具体地,我们规定距离小于 (10^{-12} m{km}) 时的两个新旧中心点视为重合点。

    ​ 实现该算法时,向量模长的计算需要多次求三角函数值,开销较大。因此即使处理的数据点数量较小,也需要消耗大量的时间。因此我在具体实现时使用了并发计算方法。K-means 的执行过程中,每个数据点 (P_i) 的具体归类过程不会相关影响,因此可以考虑在几个进程中分别处理一些数据点。实现上创建四个进程 ( m{thd}_{1, 2, 3, 4}) 并用 ( m{thd}_i) 处理连续的点 (P_{frac{n}{4} imes (i - 1) + 1}, dots, P_{min{frac{n}{4} imes i, n}}) 进行运行加速。同时,我修改了数据写回的顺序,集中处理共享数据避免多次进程加锁的开销,又进一步提高了模型的效率。

    ​ 完成这里的基本模型构建后,我们在高德地图开发者平台上申请一个 Web 服务应用,获得对应的 key 以访问数据库。接着查阅数据库提供的应用程序接口(Application Programming Interface, API)文档,可以编写相应程序进行数据采集。本文只采集了 POI 的名称与经纬度坐标信息,筛除了一些不需要的信息。我们特别关注了三种类型的 POI:也即 120000 商务住宅,140000 科教文化场所。其中商务住宅的聚类情况直接反映了城市的实际居住区划。另两种 POI 的分布情况则反映了具体类型的配套设施分布情况。

    ​ 得到数据后,我们就可以进行模型运算,求取上文提到的两项指标。

    ​ 第一项指标考虑设施点聚落与居住区聚落的中心距离,距离越近,聚落分布的一致性就越高。这一指标设计上是以住宅区为基点出发,反映我们与所关注的 POI 之间的距离。在结论上,这一指标人本地反映了城市居民获取对应资源的便利程度。我们称这项指标为「疏远度」。

    ​ 第二个指标,是将设施点与居住区点数据糅合之后进行聚落分析,再考虑各个聚落的设施点占比。这一指标设计上是从配套设施出发,考虑其向周围辐射的能力。在结论上,这一指标物质地反映了城市资源设施向居住区覆盖的程度高低。我们称这项指标为「覆盖率」。

    ​ 这里首先求疏远度,考虑设施点聚落与居住区聚落的中心距离。我们分别采集科教文场所与居住区聚落的信息,运行 K-means 算法后利用高德实验室提供的可视化接口,可以得到:

    图1: 南京 POI 聚落分布
    图2:苏州 POI 聚落分布

    ​ 两组图片中,左侧均为科教文场所聚类分布情况,右侧均为住宅区域分布情况。

    ​ 我们赋予不同的点互异的颜色,来代表它们从属的不同聚落。直观地看,我们可以发现两类 POI 的聚落分布是基本一致的。为了精准地进行量化评估,我们可以对数据做进一步的抽象。首先,考虑 K-means 算法得到的一系列聚落中心点 (mu_1, dots, mu_k),根据聚落内点的个数确定其相对大小。我们将这些数据送由 Python 可视化处理,就能得到这样的图像:

    cluster_distri

    图3:城市 POI 聚落叠加分布图,左为南京,右为苏州

    ​ 点的意义如图例所示,其相对尺寸又反映了对应聚落的大小。我们记居住区聚落点为 (mu_1, dots, mu_k),我们研究的 POI 聚落点为 (varphi_1, dots, varphi_k),点 (p) 的大小记为 (|p|)。于是,我们则可以定义疏远度 (mathscr A) 为:

    [mathscr{A} = sum_{i = 1}^k min_{1 leq j leq k} ( ||mu_i - varphi_j|| cdot frac{|mu_i|}{|varphi_j|}) ]

    ​ 这里我们通过之前定义的向量模长表征两个聚落之间的距离,从而反映其关联程度,又以尺寸比值为权求距离的加权最小值,这样就能在相当程度上反映城市总体上居住区向特定 POI 的疏远度。编写程序进行运算,可以得到 (largemathscr{A}_{ ext{Suzhou}} = small 16.0698,~~~largemathscr{A}_{ ext{Nanjing}} = small 43.1623)

    ​ 这一数值对比提示:人本地看,苏州城市居民由城市居住区划出发,获取科教文资源更加方便。

    ​ 接着我们计算覆盖率指标。首先将已经采集到的各类 POI 数据糅杂,重新输入 K-means 模型进行聚类分析。可以得到下面的表格:

    A B C D E F G H I
    Science, Education and Culture Places 188 64 23 92 35 76 9 30 34
    Residential Area 343 94 26 190 45 108 16 31 47
    Proportion 0.54 0.68 0.88 0.48 0.78 0.70 0.56 0.97 0.72
    表1:南京总体 POI 聚落点构成表
    A B C D E F G H I
    Science, Education and Culture Places 214 73 55 155 98 32 49 102 97
    Residential Area 274 6 22 210 53 19 36 140 115
    Proportion 0.78 12.16 2.50 0.73 1.84 1.68 1.36 0.72 0.84
    表2:苏州总体 POI 聚落点构成表

    ​ 在一些城市中的大学城、科创城等区域中,科教文场所与居住区域的比值会显著高于其他区域。这些区域聚类中的科教文场所辐射范围也有限,很难代表城市的总体水平,但也不能完全忽略。基于这样的考量,我们考虑将每个聚落抽象成点,将两类 POI 数量分别为横纵坐标,再通过线性回归拟合出一条过原点的直线。那么这条直线的斜率就反映了该城市 POI 覆盖的总体水平。我们不妨即定义覆盖率指标为该直线的斜率。

    ​ 于是,记各聚落对应的点分别为 ((x_1,y_1), dots, (x_k, y_k)),通过最小二乘法计算,可以得到覆盖率满足公式:

    [mathscr{C} = left({sum_{i=1}^k x_i cdot y_i} ight) igg/ left({sum_{i=1}^k x_i^2} ight) ]

    ​ 编写程序,我们可以算出对应结果,并给出一个较好的可视化表示:

    vis2

    图4:城市 POI 覆盖率回归图,左为苏州,右为南京

    ​ 可视化表示之外,我们也可以在数值上发现 (largemathscr{C}_{ ext{Suzhou}} = small 0.840029,~~~largemathscr{C}_{ ext{Nanjing}} = small 0.560124)。这一数值对比提示,物质地看,苏州市的科教文化场所覆盖居住区划程度更高。

    结论

    ​ 本文基于高德地图的数据库,提供了一系列数学与计算机方法构建了一个评估模型。该模型可以用于评价城市居住区划的设施配套情况。模型基于机器学习的聚类分析方法,有效避免对城市边缘地区或特殊地段对结果的影响,也能较客观地反映城市的实际居住区划分野。

    ​ 这一模型关注两个重要指标,疏远度 (mathscr{A}) 与 覆盖率 (mathscr{C})。其中,疏远度是一个更人本的指标,关注城市居民由居住区划出发获取对应设施资源的便利度;覆盖率是一个更物质的指标,关注城市特定设施覆盖居住区划的有效程度。两项指标都是我们评价城市居住区划配套设施完备情况的重要参考,不可偏废。

    ​ 具体地,我们考虑城市居住区划的科教文设施配套情况,并分别在苏州市与南京市运行了模型,得到了一些初步的结果。我们发现疏远度计算结果为 (largemathscr{A}_{ ext{Suzhou}} = small 16.0698,~~~largemathscr{A}_{ ext{Nanjing}} = small 43.1623),而覆盖率计算结果为(largemathscr{C}_{ ext{Suzhou}} = small 0.840029,~~~largemathscr{C}_{ ext{Nanjing}} = small 0.560124)。两项指标均显示苏州市的居住区划配备科教文设施情况更优。

    ​ 总而言之,本文提供的模型与方法有较好的应用意义与可推广性:使用者只需修改一个或两个参数,就可以转而研究国内的任一城市的相关情况。本文通过一系列可视化方法,使得结果具有很好的直观性;又通过公式推导与程序计算,使得结果有较好的精确性。可以说,本文提出的模型与方法对于智慧城市规划,是很有一定作用和意义的。

    附录:关键模型代码节选

    # Python Code Blocks 1#: Cluster Visualization
    plt.axis('equal')
    ax = plt.subplot()
    func = lambda x: min(x * 3, 500)
    ax.scatter(eduX, eduY, s=list(map(func, eduSiz)), c = 'red',
               alpha = 0.6, label = "Science, Education and Culture Places")
    ax.scatter(resX, resY, s=list(map(func, resSiz)), c = 'green',
               alpha = 0.6, label = "Residential Area")
    
    plt.show()
    
    // C++ Code Blocks 2#: Multithreading K-means Algorithm
    
    double CalcuDis(const Point& a, const Point& b) {
        static const double p = M_PI / 180;
        return 12742 * asin(sqrt(0.5 - cos((b.lat - a.lat) * p) / 2 
            + cos(a.lat * p) * cos(b.lat * p) * (1 - cos((b.lon - a.lon) * p)) / 2));
    }
    
    std::mutex mtx;
    void runThrough(std::vector<int>& clusterSize,
        std::vector<int>& assignment,
        const std::vector<Point>& m_points,
        const std::vector<Point>& m_centers,
        int lef, int rig, int m_numCenters) {
        std::vector<int> minVec;
        for (int i = lef; i != rig; ++i) {
            int minInd = 0;
            double minDis = 0x7f7f7f7f, curDis;
            for (short j = 0; j != m_numCenters; ++j) {
                curDis = CalcuDis(m_points[i], m_centers[j]);
                if (curDis < minDis) {
                    minInd = j;
                    minDis = curDis;
                }
            }
            minVec.push_back(minInd);
        }
        std::lock_guard<std::mutex> lock(mtx);
        for (int i = lef; i != rig; ++i) {
            --clusterSize[assignment[i]];
            assignment[i] = minVec[i - lef];
            ++clusterSize[minVec[i - lef]];
        }
    }
    
    std::vector<index_t> Kmeans::Run(int maxIterations) {
        std::vector<index_t> assignment(m_numPoints, 0);
        int currIteration = 0;
    
        const double eps = 1e-12;
        double newX[m_numCenters], newY[m_numCenters];
        int interval = m_numPoints / 4;
        std::vector<int> clusterSize(m_numCenters, 0);
        clusterSize[0] = m_numPoints;
    
        while (currIteration < maxIterations) {
            std::vector<std::thread> thdVec;
            for (int ind = 0; ind < m_numPoints; ind += interval) {
                thdVec.push_back(std::thread(runThrough, 
                    std::ref(clusterSize), std::ref(assignment), 
                    std::ref(m_points), std::ref(m_centers),
                    ind, std::min(m_numPoints, ind + interval), m_numCenters));
            }
    
            for (auto& thd: thdVec) thd.join();
            for (short i = 0; i != m_numCenters; ++i) {
                newX[i] = newY[i] = 0;
            }
            for (int i = 0; i != m_numPoints; ++i) {
                newX[assignment[i]] += m_points[i].lat;
                newY[assignment[i]] += m_points[i].lon;
            }
            bool flag = false;
            for (short i = 0; i != m_numCenters; ++i) {
                newX[i] /= clusterSize[i];
                newY[i] /= clusterSize[i];
                Point newCentroid(newX[i], newY[i], 0);
                if (CalcuDis(newCentroid, m_centers[i]) > eps) {
                    m_centers[i] = newCentroid;
                    flag = true;
                }
            }
            if (!flag) break;
            ++currIteration;
        }
    
        return assignment;
    }
    

    参考文献

    [1] Robusto C C . Classroom Notes: The Cosine-Haversine Formula.[J]. Amer.math.monthly, 1957(1):38-40.

    [2] Wong J A H A . Algorithm AS 136: A K-Means Clustering Algorithm[J]. Journal of the Royal Statistical Society, 1979, 28(1):100-108.

    [3] Geladi P , Kowalski B R . Partial Least-Squares Regression: A Tutorial[J]. Analytica Chimica Acta, 1986, 185(1):1-17.

  • 相关阅读:
    FlaskRESTful之响应处理
    FlaskRESTful之请求处理(RequestParser)
    FlaskRESTful之入门
    Flask框架之异常处理和请求钩子
    Flask框架之Cookie和Session
    Flask框架之请求和响应
    Flask框架的路由和蓝图
    初识Flask框架
    DRF框架之问题总结
    字符串和date数据进行转换和Date类型进行计算
  • 原文地址:https://www.cnblogs.com/Shimarin/p/14987815.html
Copyright © 2011-2022 走看看