zoukankan      html  css  js  c++  java
  • python numpy小记1

    1.参考:https://docs.scipy.org/doc/numpy/reference/generated/numpy.outer.html#numpy.outer

    向量$b=[1,2,3]^T$,求$bb^T$为3x3的矩阵。因为numpy.dot得到的是向量的内积。

    为计算$bb^T$,使用numpy.outer命令。故可以得到3x3的矩阵。

    2.reshape(-1,1)的用法。变成一列,行数自动得到。得到2*1的维度。

    x = np.array([1,2]).reshape(-1, 1)            

    2.1关于np.array()直接‘’=‘’号赋值,对新array的改变将直接改变旧array的值。故使用copy()方法。

    old = np.array([[1, 1, 1],
                    [1, 1, 1]])
    new = old
    new[0, :2] = 0
    
    print(old)
    """
    我们得到的输出为: 
     [ [0 0 1],  
        [1 1 1]  ]
    
    """

    使用copy()方法:

    old = np.array([[1, 1, 1],
                    [1, 1, 1]])
    
    new = old.copy()
    new[:, 0] = 0
    
    print(old)
    """输出为原来的值:
     [[1 1 1],
     [1 1  1]  ]
    
    ""        

    2.2 np.array() 的遍历:

    test = np.random.randint(0, 10, (4,3))
    """
    >>> test
    array([[4, 7, 3],
           [8, 5, 7],
           [1, 4, 8],
           [1, 9, 8]])
    """
    for row in test:
         print(row)
    """ output:
    [4 7 3]
    [8 5 7]
    [1 4 8]
    [1 9 8]
    """
    for i in range(len(test)):
         print i
    """ output:
    0
    1
    2
    3
    """
    for i, row in enumerate(test):
         print('row', i,'is', row )
    
    """output: 
    ('row', 0, 'is', array([4, 7, 3]))
    ('row', 1, 'is', array([8, 5, 7]))
    ('row', 2, 'is', array([1, 4, 8]))
    ('row', 3, 'is', array([1, 9, 8]))
    """
    test2 = test**2
    """ output:
    >>> test2
    array([[16, 49,  9],
           [64, 25, 49],
           [ 1, 16, 64],
           [ 1, 81, 64]])
    
    """

    同时遍历这两个array,可以使用zip()

     for i, j in zip(test, test2):
        print i, "+" , j,'=', i+j
    """
    [4 7 3] + [16 49  9] = [20 56 12]
    [8 5 7] + [64 25 49] = [72 30 56]
    [1 4 8] + [ 1 16 64] = [ 2 20 72]
    [1 9 8] + [ 1 81 64] = [ 2 90 72]
    """

     3. 投影矩阵

     1.1.将$x$投影到$b$的向量为: $frac{bb^T}{ {lVert b Vert}^2} x$ ,投影矩阵为 $frac{bb^T}{ {lVert b Vert}^2}$

    def projection_matrix_1d(b):
        """Compute the projection matrix onto the space spanned by `b`
        Args:
            b: ndarray of dimension (D,), the basis for the subspace
        
        Returns:
            P: the projection matrix
        """
        D, = b.shape
        P = np.eye(D) # EDIT THIS
        P = np.outer(b, b.T) / np.dot(b,b)
        return P

     投影向量:

    def project_1d(x, b):
        """Compute the projection matrix onto the space spanned by `b`
        Args:
            x: the vector to be projected
            b: ndarray of dimension (D,), the basis for the subspace
        
        Returns:
            y: projection of x in space spanned by b
        """
        p = np.zeros(3) # EDIT THIS
        P = np.dot(projection_matrix_1d(b),x)
        return p

    2.1 将$x$投影到多维空间,设该多维空间的基为 $[b_1, b_2...b_M]$,可视为DxM维矩阵。得到的投影矩阵为 $B (B^TB)^{-1} B^T$。

    def projection_matrix_general(B):
        """Compute the projection matrix onto the space spanned by `B`
        Args:
            B: ndarray of dimension (D, M), the basis for the subspace
        
        Returns:
            P: the projection matrix
        """
        P = np.eye(B.shape[0]) # EDIT THIS
        P = np.dot( np.dot( B, np.linalg.pinv(B.T, B)), B.T )
        return P

    2.2 得到的投影向量计算为  $B (B^TB)^{-1} B^T x$

    def project_general(x, B):
        """Compute the projection matrix onto the space spanned by `B`
        Args:
            B: ndarray of dimension (D, E), the basis for the subspace
        
        Returns:
            y: projection of x in space spanned by b
        """
        p = np.zeros(x.shape) # EDIT THIS
        P = np.dot( projection_matrix_general(B), x )
        return p

     3.关于向量乘法中@ 符号的用法。 

    参考来源:https://legacy.python.org/dev/peps/pep-0465/

    import numpy as np
    from numpy.linalg import inv, solve
    
    # Using dot function:
    S = np.dot((np.dot(H, beta) - r).T,
               np.dot(inv(np.dot(np.dot(H, V), H.T)), np.dot(H, beta) - r))
    
    # Using dot method:
    S = (H.dot(beta) - r).T.dot(inv(H.dot(V).dot(H.T))).dot(H.dot(beta) - r)

    如果使用@操作符。

    #With the @ operator, the direct translation of the above formula #becomes:
    S = (H @ beta - r).T @ inv(H @ V @ H.T) @ (H @ beta - r)
    The Safest Way to Get what you Want is to Try and Deserve What you Want.
  • 相关阅读:
    css calc()
    timeline css
    $obj->0
    释放内存
    Aggregate (GROUP BY) Function Descriptions
    算法-拼团-推荐团排序
    linux 命令行 执行 php
    c memery
    获取监控信息,产生监控响应动作
    green rgb(255, 102, 0) #FF6600
  • 原文地址:https://www.cnblogs.com/Shinered/p/9206210.html
Copyright © 2011-2022 走看看