zoukankan      html  css  js  c++  java
  • python matplotlib

    import matplotlib as mpl
    mpl.get_backend()
    # 'nbAgg'
    import matplotlib.pyplot as plt
    plt.plot(3,2,'.')

    作图 :

    from matplotlib.backends.backend_agg import FigureCanvasAgg
    from matplotlib.figure import Figure
    
    fig = Figure()
    canvas = FigureCanvasAgg(fig)
    
    ax = fig.add_subplot(111)
    ax.plot(3, 2, '.')
    canvas.print_png('test.png')
    ##notebook 中用html显示图片
    %%html
    <img src = 'test.png'/>

    2. 用plt.gca()用法

    plt.figure()
    plt.plot(3, 2, 'o')
    ax = plt.gca()
    ax.axis([0,6,0,10])

    plt.figure()
    plt.plot(1.5,1.5,'o')
    plt.plot(2,2,'o')
    plt.plot(2.5,2.5,'o')

    3. Scatterplot()

    import numpy as np
    x = np.array([1,2,3,4,5,6,7,8])
    y = x
    plt.figure()
    plt.scatter(x,y)

    import numpy as np
    x = np.array([1,2,3,4,5,6,7,8])
    y = x
    colors = ['green']*(len(x)-1)
    colors.append('red')
    
    plt.figure()
    plt.scatter(x,y,s=100, c=colors) #s为scatter 点的size

    zip()

    zip_generator = zip([1,2,3,4,5],[6,7,8,9,10])
    list(zip_generator)
    """
    output: 
    [(1, 6), (2, 7), (3, 8), (4, 9), (5, 10)]
    
    """
    zip_generator =  zip([1,2,3,4,5],[6,7,8,9,10])
    #unpack this result into two variables directly ,x ans y
    x,y = zip(*zip_generator) 
    print(x)
    print(y)
    #output:
    # (1, 2, 3, 4, 5)
    # (6, 7, 8, 9, 10)
    #

    散点图画法

    plt.figure()
    plt.scatter(x[:2], y[:2], s=100, c='red',  label='Tall students')
    plt.scatter(x[2:], y[2:], s=100, c='blue', label ='Short student')
    
    plt.xlabel('The number of times the child kicked a ball')
    plt.ylabel('The grade of the student')
    plt.title('Relationship between ball kicking and grades')
    
    plt.legend()
    
    plt.legend(loc=4, frameon=False, title='Legend') #右下角

     4. Linear plot

    import numpy as np
    linear_data = np.array([1,2,3,4,5,6,7,8])
    quadratic_data = linear_data**2
    
    plt.figure()
    plt.plot(linear_data, '-o', quadratic_data, '-o')
    
    plt.plot([22,44,55], '--r')
    
    plt.xlabel('Some data')
    plt.ylabel('Some other data')
    plt.title('A title')
    plt.legend(['Baseline', 'Competition', 'Us'])
    
    #fill
    plt.gca().fill_between(range(len(linear_data)),
                          linear_data, quadratic_data,
                          facecolor='blue',
                          alpha = 0.25)

    plt.figure()
    
    observation_dates = np.arange('2017-01-01', '2017-01-09', dtype='datetime64[D]')
    
    plt.plot(observation_dates, linear_data, '-o', observation_dates, quadratic_data,'-o')

    plt.figure()
    observation_dates = np.arange('2017-01-01','2017-01-09', dtype='datetime64[D]')
    observation_dates = list(map(pd.to_datetime, observation_dates))
    plt.plot(observation_dates, linear_data, '-o', 
             observation_dates, quadratic_data, '-o')
    
    x = plt.gca().xaxis
    
    for item in x.get_ticklabels():
        item.set_rotation(45) #旋转一定的角度
        
    plt.subplots_adjust(bottom=0.25) #调整与底部的距离
    
    ax = plt.gca()
    ax.set_xlabel('Date')
    ax.set_ylabel('Units')
    ax.set_title('Quadratic vs. Linear performance')
    
    ax.set_title('Quadratic ($x^2$) vs. Linear ($x$) performance' ) #Latex

    5 .  Bar chart

    plt.figure()
    xvals = range(len(linear_data))
    plt.bar(xvals, linear_data, width=0.3)
    
    new_xvals = []
    for item in xvals:
        new_xvals.append(item+0.3)
    
    plt.bar(new_xvals, quadratic_data, width=0.3, color='red')
    
    from random import randint
    linear_err = [randint(0,15) for x in range(len(linear_data))]
    plt.bar(xvals, linear_data, width=0.3, yerr = linear_err)

    plt.figure()
    xvals = range(len(linear_data))
    plt.bar(xvals, linear_data, width=0.3, color='b')
    plt.bar(xvals, quadratic_data, width=0.3, bottom = linear_data,color='r')

    plt.figure()
    xvals = range(len(linear_data))
    plt.barh(xvals, linear_data, height=0.3, color='b')
    plt.barh(xvals, quadratic_data, height=0.3, left=linear_data, color='r')
    #垂直变水平

    The Safest Way to Get what you Want is to Try and Deserve What you Want.
  • 相关阅读:
    Oracle between and 边界问题
    多线程——什么是并发与并行
    js:浅拷贝和深拷贝
    JavaScript中数组元素删除的七大方法汇总
    js 去掉字符串前面的0
    chrome总是提示"喔唷,崩溃啦"的解决办法
    智慧城市管理信息系统建设项目的架构分析
    利用DenseUNet深度神经网络数之联河湖遥感大数据的研究
    无人机+数字孪生助力河长制巡查方法探讨
    防汛可视化指挥平台“一张图”技术研究
  • 原文地址:https://www.cnblogs.com/Shinered/p/9430353.html
Copyright © 2011-2022 走看看