zoukankan      html  css  js  c++  java
  • 【YBTOJ】【单调队列优化DP】写博客

    写博客

    小泽发了一篇博客,由 (n) 个小写英文字母组成,由于包含违禁词,被自动隐藏。

    具体地,违禁词有 (m) 个,分别为 (T_1,T_2,dots,T_m)

    小泽发现,只要博客中,连续地包含了其中违禁词,那么博客就会被自动隐藏。换言之,对于任意 (1leq ileq m)(T_i) 都不能是最终发表的博客 (S) 的子串。

    于是小泽决定在原来的博客 (S) 上把一部分字母替换成空格,使得它不再包含违禁词。如果她把第 (i) 个字母替换成空格,与之相邻的两个字母将不会连续,但是整篇博客的价值会减少 (a_i)

    小泽想要知道,如何替换可以得到一篇不会被自动隐藏的博客,而价值的减少量最少。请你帮她回答这个问题。

    (1leq n=|S|leq2 imes10^5)(1leq mleq10)(1leq|T_i|leq2 imes10^5)(0leq a_ileq 1000).

    题解

    设原串是 a 串,违禁词串为 b 串。

    将 b 串在 a 串内跑kmp,找到每个 b 串在 a 串中出现的位置(设为线段((l,r)))。

    则原问题转化为:选取权值最小的点集,覆盖所有线段。


    • (dp_i) 表示必定选取点 (i) ,且覆盖所有位置在点 (i)(i) 之前的线段,所用的最小代价。
    • 另设 (pre_i) 表示严格(i)右端点的所有线段中,左端点最大的线段的左端点值。

    如下图,其 (pre_i)(x_2) .

    考虑:对于一个 (dp_i) ,显然有 (dp_i=dp_j+w_i)

    那么, (j) 的范围应该是什么?

    我们重新考虑 dp 的定义。

    (dp)表示“覆盖所有位置在点 (i)(i) 之前的线段”。

    拆分此定义来看:

    1. 覆盖所有在 (i) 之前的线段
    2. 覆盖所有经过 (i) 的线段

    对于1.,显然是用 (dp_j) 覆盖,并转移而来。

    对于2.,则是用 (w_i) 来覆盖。

    形象化地来说,对于下图:

    对于点 (i) ,其左侧所有绿色线段(dp_j) 来覆盖,经过它的所有蓝色线段(i) 来覆盖,右侧黑色线段暂不考虑。

    除去一些线段,得到如下:

    对于点 (i-1) ,有一条线段经过它,其左端点为(pre_{i-1})

    使用 (dp_{j}) 来覆盖绿色线段时,必定要让 (j) 来覆盖掉所有在 ([pre_{i-1},i-1]) 之间的线段。

    由此可知,(jin[pre_{i-1},i-1]).

    总 DP 式: (dp_i = minlimits_{j=pre_{i-1}}^{i-1}{dp_j}+w_i).

    显然,强制使 (pre) 单调不降后,答案必定成立。

    这样,可以使用单调队列来优化 dp .


    关于为什么 (j) 的左端点不可取 (pre_i)

    • 由于点 (i) 表示右端点是 (i) 的线段,这些线段会被 (i) 覆盖,而不是 (j) .

    代码

    #include <bits/stdc++.h>
    #define fo(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout);
    using namespace std;
    const int INF = 0x3f3f3f3f,N = 2e5+5;
    typedef long long ll;
    typedef unsigned long long ull;
    inline ll read(){
    	ll ret=0;char ch=' ',c=getchar();
    	while(!(c>='0'&&c<='9'))ch=c,c=getchar();
    	while(c>='0'&&c<='9')ret=(ret<<1)+(ret<<3)+c-'0',c=getchar();
    	return ch=='-'?-ret:ret;
    }
    int n,m,w[N];
    template <typename T> struct dque{
    	T a[N]; int st=1,ed=0;
    	dque(){st=1,ed=0;}
    	inline void clear(){st=1,ed=0;}
    	inline int size(){return ed-st+1;}
    	inline bool empty(){return !(ed-st+1);}
    	inline void pop_front(){st++;}
    	inline void pop_back(){ed--;}
    	inline T front(){return a[st];}
    	inline T back(){return a[ed];}
    	inline void push_back(T x){a[++ed] = x;}
    	inline T operator [] (int x){return a[st+x-1];}
    };
    int fail[N],pre[N];
    
    void kmp(char a[],char b[]){
    	int len = strlen(b+1);
    	memset(fail,0,sizeof(int)*(len+1));
    	for(int i=2,j=0 ; i <= len ; i ++){
    		while(j && b[j+1] != b[i]) j = fail[j];
    		j += b[j+1] == b[i];
    		fail[i] = j;
    	}
    	for(int i=1,j=0 ; i <= n ; i ++){
    		pre[i] = max(pre[i],pre[i-1]);
    		while(j && b[j+1] != a[i]) j = fail[j];
    		j += b[j+1] == a[i];
    		if(j == len) pre[i] = max(pre[i],i-len+1) , j = fail[j];
    	}
    }
    char a[N],b[N];
    int dp[N];
    signed main(){
    	n = read() , m = read();
    	scanf("%s",a+1);
    	for(int i = 1 ; i <= n ; i ++)
    		w[i] = read();
    	while(m--){
    		scanf("%s",b+1);
    		kmp(a,b);
    	}
    	dque<int> q;
    	q.push_back(0);
    	n++;
    	for(int i = 1 ; i <= n ; i ++){
    		while(!q.empty() && q.front() < pre[i-1]) q.pop_front();
    		dp[i] = dp[q.front()] + w[i];
    		while(!q.empty() && dp[q.back()] > dp[i]) q.pop_back();
    		q.push_back(i);
    	}
    	printf("%d",dp[n]);
    	return 0;
    }
    
  • 相关阅读:
    mysql的存储过程
    一份php高级工程师的面试题,我每天看一点点
    php的常用函数(持续更新)
    php 中文字符串截取
    php递归遍历文件目录
    ajax timeout 断网处理
    angular 刷新问题
    angular state中templateUrl 路径的模板
    angular请求传递不了数据
    截取字符串 substring substr slice
  • 原文地址:https://www.cnblogs.com/Shinomiya/p/15292979.html
Copyright © 2011-2022 走看看