公共子序列
题目链接:https://cometoj.com/contest/39/problem/E?problem_id=1585
数据范围:略。
题解:
首先可以考虑知道了$1$的个数和$3$的个数,怎么求?
其实就是从开始找$x$个$1$,从结尾找$z$个$3$,然后两个序列中间$2$的个数的较小值。
然后按照官方题解那样推式子,发现可以用树状数组维护。
代码:
#include <bits/stdc++.h> #define N 5000010 using namespace std; char *p1, *p2, buf[100000]; #define nc() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 100000, stdin), p1 == p2) ? EOF : *p1 ++ ) int rd() { int x = 0; char c = nc(); while (c < 48) { c = nc(); } while (c > 47) { x = (((x << 2) + x) << 1) + (c ^ 48), c = nc(); } return x; } struct BT { int tree[N << 1], n; inline int lowbit(int x) { return x & (-x); } void update(int x, int val) { for (int i = x; i <= n; i += lowbit(i)) { tree[i] = max(tree[i], val); } } int query(int x) { int ans = -999999999; for (int i = x; i; i -= lowbit(i)) { ans = max(ans, tree[i]); } return ans; } }T1, T2; struct Node { int x, y; }st1[N], st2[N]; int a[N], b[N], sa[N], sb[N], cnt1, cnt2; int main() { // cout << (int)0xefefefef << ' ' << -999999999 << endl ; int T = rd(); while (T -- ) { int n = rd(), m = rd(); T1.n = T2.n = n + m + 1; for (int i = 1; i <= n + m + 1; i ++ ) { T1.tree[i] = T2.tree[i] = -999999999; } for (int i = 1; i <= n; i ++ ) { a[i] = rd(); sa[i] = sa[i - 1]; if (a[i] == 2) { sa[i] ++ ; } } for (int i = 1; i <= m; i ++ ) { b[i] = rd(); sb[i] = sb[i - 1]; if (b[i] == 2) { sb[i] ++ ; } } int u1 = 1, u2 = 1; cnt1 = 0; while (1) { for (; a[u1] != 1 && u1 < n; u1 ++ ); for (; b[u2] != 1 && u2 < m; u2 ++ ); if (a[u1] != 1 || b[u2] != 1) { break; } st1[ ++ cnt1] = (Node) {u1, u2}; u1 ++ , u2 ++ ; } u1 = n, u2 = m; cnt2 = 0; while (1) { for (; a[u1] != 3 && u1 > 1; u1 -- ); for (; b[u2] != 3 && u2 > 1; u2 -- ); if (a[u1] != 3 || b[u2] != 3) { break; } st2[ ++ cnt2] = (Node) {u1, u2}; u1 -- , u2 -- ; } int now = 0, ans = 0; st2[0] = (Node) {n, m}; for (int i = cnt1; ~i; i -- ) { int x = st1[i].x, y = st1[i].y, mdl; for (; st2[now].x >= x && st2[now].y >= y && now <= cnt2; now ++ ) { mdl = sa[st2[now].x] - sb[st2[now].y]; T1.update(m + 1 + mdl, now + sa[st2[now].x]); T2.update(n + 1 - mdl, now + sb[st2[now].y]); } mdl = sa[x] - sb[y]; ans = max(ans, i + T1.query(m + 1 + mdl) - sa[x]); ans = max(ans, i + T2.query(n + 1 - mdl) - sb[y]); } printf("%d ", ans); } return 0; }