zoukankan      html  css  js  c++  java
  • POJ——T2446 Chessboard

    http://poj.org/problem?id=2446

    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 18560   Accepted: 5857

    Description

    Alice and Bob often play games on chessboard. One day, Alice draws a board with size M * N. She wants Bob to use a lot of cards with size 1 * 2 to cover the board. However, she thinks it too easy to bob, so she makes some holes on the board (as shown in the figure below). 

    We call a grid, which doesn’t contain a hole, a normal grid. Bob has to follow the rules below: 
    1. Any normal grid should be covered with exactly one card. 
    2. One card should cover exactly 2 normal adjacent grids. 

    Some examples are given in the figures below: 
     
    A VALID solution.

     
    An invalid solution, because the hole of red color is covered with a card.

     
    An invalid solution, because there exists a grid, which is not covered.

    Your task is to help Bob to decide whether or not the chessboard can be covered according to the rules above.

    Input

    There are 3 integers in the first line: m, n, k (0 < m, n <= 32, 0 <= K < m * n), the number of rows, column and holes. In the next k lines, there is a pair of integers (x, y) in each line, which represents a hole in the y-th row, the x-th column.

    Output

    If the board can be covered, output "YES". Otherwise, output "NO".

    Sample Input

    4 3 2
    2 1
    3 3
    

    Sample Output

    YES

    Hint

     
    A possible solution for the sample input.

    Source

    POJ Monthly,charlescpp
     
    题解:
    把棋盘染成这个样子,有障碍的不染,用黑色格子与白色格子匹配,对这一个二分图求最大匹配。如果Ans*2+K=N*M,则能完全覆盖
     1 #include <algorithm>
     2 #include <cstring>
     3 #include <cstdio>
     4 
     5 using namespace std;
     6 
     7 const int N(32*32);
     8 int n,m,p,x,y,ans;
     9 int match[N][N][2],lose[N][N];
    10 int vis[N][N],sumvis;
    11 int fx[4]={1,0,-1,0};
    12 int fy[4]={0,1,0,-1};
    13 
    14 bool DFS(int x,int y)
    15 {
    16     for(int i=0;i<4;i++)
    17     {
    18         int xx=x+fx[i], yy=y+fy[i];
    19         if(vis[xx][yy]!=sumvis&&!lose[xx][yy])
    20         {
    21             vis[xx][yy]=sumvis;
    22             if(!match[xx][yy][0]||DFS(match[xx][yy][0],match[xx][yy][1]))
    23             {
    24                 match[xx][yy][0]=x;
    25                 match[xx][yy][1]=y;
    26                 return true;
    27             }
    28         }
    29     }
    30     return false;
    31 }
    32 
    33 int main()
    34 {
    35     while(~scanf("%d%d%d",&n,&m,&p))
    36     {
    37         if((n*m-p)%2)
    38         {
    39             printf("NO
    ");
    40             continue;
    41         }
    42         ans=sumvis=0;
    43         memset(vis,0,sizeof(vis));
    44         memset(lose,0,sizeof(lose));
    45         memset(match,0,sizeof(match));
    46         for(int i=1;i<=p;i++)
    47         {
    48             scanf("%d%d",&x,&y);
    49             lose[y][x]=1;
    50         }
    51         for(int i=0;i<=n;i++) 
    52             lose[i][0]=lose[i][m+1]=1;
    53         for(int i=0;i<=m;i++) 
    54             lose[0][i]=lose[n+1][i]=1;
    55         for(int i=1;i<=n;i++)
    56           for(int j=1;j<=m;j++)
    57             if((i+j)%2==0&&!lose[i][j])
    58             {
    59                 sumvis++;
    60                 if(DFS(i,j)) ans++;
    61             }
    62         if(ans*2+p==m*n) printf("YES
    ");
    63         else printf("NO
    ");
    64     }
    65     return 0;
    66 }
    ——每当你想要放弃的时候,就想想是为了什么才一路坚持到现在。
  • 相关阅读:
    iOS开发——判断是否第一次启动
    iOS开发——关于开发者账号引发的血案
    The identity used to sign the executable is no longer valid.
    iOS开发 missing iOS distribution signing identity for 。。。
    iOS开发实现Label中多颜色多字体
    10.8.5如何升级(app store 出错 请稍后重试 100)
    XCode 7上传遇到ERROR ITMS-90535 Unexpected CFBundleExecutable Key. 的解决办法
    mysql索引的类型和优缺点
    .htaccess Rewrite apache重写和配置
    mysql xtrabackup 备份恢复实现,mysql命令备份数据库,打包压缩数据库
  • 原文地址:https://www.cnblogs.com/Shy-key/p/6901269.html
Copyright © 2011-2022 走看看