zoukankan      html  css  js  c++  java
  • POJ——T 3255 Roadblocks|| COGS——T 315. [POJ3255] 地砖RoadBlocks || 洛谷—— P2865 [USACO06NOV]路障Roadblocks

    http://poj.org/problem?id=3255

    Time Limit: 2000MS   Memory Limit: 65536K
    Total Submissions: 15680   Accepted: 5510

    Description

    Bessie has moved to a small farm and sometimes enjoys returning to visit one of her best friends. She does not want to get to her old home too quickly, because she likes the scenery along the way. She has decided to take the second-shortest rather than the shortest path. She knows there must be some second-shortest path.

    The countryside consists of R (1 ≤ R ≤ 100,000) bidirectional roads, each linking two of the N (1 ≤ N ≤ 5000) intersections, conveniently numbered 1..N. Bessie starts at intersection 1, and her friend (the destination) is at intersectionN.

    The second-shortest path may share roads with any of the shortest paths, and it may backtrack i.e., use the same road or intersection more than once. The second-shortest path is the shortest path whose length is longer than the shortest path(s) (i.e., if two or more shortest paths exist, the second-shortest path is the one whose length is longer than those but no longer than any other path).

    Input

    Line 1: Two space-separated integers: N and R 
    Lines 2..R+1: Each line contains three space-separated integers: AB, and D that describe a road that connects intersections A and B and has length D (1 ≤ D ≤ 5000)

    Output

    Line 1: The length of the second shortest path between node 1 and node N

    Sample Input

    4 4
    1 2 100
    2 4 200
    2 3 250
    3 4 100

    Sample Output

    450

    Hint

    Two routes: 1 -> 2 -> 4 (length 100+200=300) and 1 -> 2 -> 3 -> 4 (length 100+250+100=450)

    Source

     
     
    mmp、、、无向图,双向边!!啊啊啊
      1 #include <algorithm>
      2 #include <cstdio>
      3 #include <queue>
      4 
      5 using namespace std;
      6 
      7 const int INF(0x3f3f3f3f);
      8 const int N(5000+105);
      9 const int M(200000+5);
     10 
     11 int hed[N],had[N],sumedge;
     12 struct Edge
     13 {
     14     int v,next,w;
     15 }edge1[M],edge2[M];
     16 inline void ins(int u,int v,int w)
     17 {
     18     edge1[++sumedge].v=v;
     19     edge1[sumedge].next=hed[u];
     20     edge1[sumedge].w=w;
     21     hed[u]=sumedge;
     22     edge2[sumedge].v=u;
     23     edge2[sumedge].next=had[v];
     24     edge2[sumedge].w=w;
     25     had[v]=sumedge;
     26     
     27     edge1[++sumedge].v=u;
     28     edge1[sumedge].next=hed[v];
     29     edge1[sumedge].w=w;
     30     hed[v]=sumedge;
     31     edge2[sumedge].v=v;
     32     edge2[sumedge].next=had[u];
     33     edge2[sumedge].w=w;
     34     had[u]=sumedge;
     35 }
     36 
     37 int dis[N];
     38 bool inq[N];
     39 void SPFA(int s)
     40 {
     41     for(int i=1;i<s;i++) dis[i]=INF;
     42     dis[s]=0; inq[s]=1;
     43     queue<int>que; que.push(s);
     44     for(int u,v;!que.empty();)
     45     {
     46         u=que.front(); que.pop(); inq[u]=0;
     47         for(int i=had[u];i;i=edge2[i].next)
     48         {
     49             v=edge2[i].v;
     50             if(dis[v]>dis[u]+edge2[i].w)
     51             {
     52                 dis[v]=dis[u]+edge2[i].w;
     53                 if(!inq[v]) que.push(v),inq[v]=1;
     54             }
     55         }
     56     }
     57 }
     58 
     59 struct Node
     60 {
     61     int now,g;
     62     bool operator < (Node a) const
     63     {
     64         return a.g+dis[a.now]<g+dis[now];
     65     }
     66 };
     67 int Astar(int s,int t,int k)
     68 {
     69     priority_queue<Node>que;
     70     int cnt=0;  Node u,v;
     71     u.g=0; u.now=s;
     72     que.push(u);
     73     for(;!que.empty();)
     74     {
     75         u=que.top(); que.pop();
     76         if(u.now==t) cnt++;
     77         if(cnt==k) return u.g;
     78         for(int i=hed[u.now];i;i=edge1[i].next)
     79         {
     80             v.now=edge1[i].v;
     81             v.g=u.g+edge1[i].w;
     82             que.push(v);
     83         }
     84     }
     85     return 0;
     86 }
     87 
     88 inline void read(int &x)
     89 {
     90     x=0; register char ch=getchar();
     91     for(;ch>'9'||ch<'0';) ch=getchar();
     92     for(;ch>='0'&&ch<='9';ch=getchar()) x=x*10+ch-'0';
     93 }
     94 
     95 int AC()
     96 {
     97 //    freopen("block.in","r",stdin);
     98 //    freopen("block.out","w",stdout);
     99     
    100     int n,m; read(n),read(m);
    101     for(int v,u,w;m--;)
    102         read(u),read(v),read(w),ins(u,v,w);
    103     SPFA(n);    printf("%d
    ",Astar(1,n,2));
    104     return 0;
    105 }
    106 
    107 int I_want_AC=AC();
    108 int main(){;}
    Astar AC

    次短路正经做法:

    SPFA跑出从1到i和从n到i的dis,枚举每条不在最短路上的边,更新ans

     1 #include <algorithm>
     2 #include <cstdio>
     3 #include <queue>
     4 
     5 using namespace std;
     6 
     7 const int INF(0x3f3f3f3f);
     8 const int N(5000+105);
     9 const int M(100000+5);
    10 
    11 int m,n,head[N],sumedge;
    12 struct Edge
    13 {
    14     int v,next,w;
    15     Edge(int v=0,int next=0,int w=0):
    16         v(v),next(next),w(w){}
    17 }edge[M<<1];
    18 inline void ins(int u,int v,int w)
    19 {
    20     edge[++sumedge]=Edge(v,head[u],w);
    21     head[u]=sumedge;
    22 }
    23 
    24 bool inq[N];
    25 int d1[N],d2[N];
    26 inline void SPFA(int s,int *dis)
    27 {
    28     for(int i=1;i<=n;i++)
    29         inq[i]=0,dis[i]=INF;
    30     dis[s]=0; inq[s]=1;
    31     queue<int>que; que.push(s);
    32     for(int u,v;!que.empty();)
    33     {
    34         u=que.front(); que.pop(); inq[u]=0;
    35         for(int i=head[u];i;i=edge[i].next)
    36         {
    37             v=edge[i].v;
    38             if(dis[v]>dis[u]+edge[i].w)
    39             {
    40                 dis[v]=dis[u]+edge[i].w;
    41                 if(!inq[v]) que.push(v),inq[v]=1;
    42             }
    43         }
    44     }
    45 }
    46 
    47 inline void read(int &x)
    48 {
    49     x=0; register char ch=getchar();
    50     for(;ch>'9'||ch<'0';) ch=getchar();
    51     for(;ch>='0'&&ch<='9';ch=getchar()) x=x*10+ch-'0';
    52 }
    53 
    54 int AC()
    55 {
    56     freopen("block.in","r",stdin);
    57     freopen("block.out","w",stdout);
    58 
    59     read(n),read(m);
    60     for(int v,u,w;m--;ins(u,v,w),ins(v,u,w))
    61         read(u),read(v),read(w);
    62     SPFA(1,d1); SPFA(n,d2);
    63     int ans=INF,tmp;
    64     for(int i,v,u=1;u<=n;u++)
    65     {
    66         for(int i=head[u];i;i=edge[i].next)
    67         {
    68             v=edge[i].v;
    69             tmp=d1[u]+d2[v]+edge[i].w;
    70             if(tmp>d1[n]&&ans>tmp) ans=tmp;
    71         }
    72     }
    73     printf("%d
    ",ans);
    74     return 0;
    75 }
    76 
    77 int I_want_AC=AC();
    78 int main(){;}
    SPFA 跑次短路

    堆优化的Dijkstra

    用两个数组记录到当前点的最小值d1[n]和次小值d2[n],注意d2[s]=INF而不是0

     1 #include <algorithm>
     2 #include <cstdio>
     3 #include <queue>
     4 
     5 using namespace std;
     6 
     7 const int INF(0x3f3f3f3f);
     8 const int N(5000+105);
     9 const int M(100000+5);
    10 
    11 int m,n,head[N],sumedge;
    12 struct Edge
    13 {
    14     int v,next,w;
    15     Edge(int v=0,int next=0,int w=0):
    16         v(v),next(next),w(w){}
    17 }edge[M<<1];
    18 inline void ins(int u,int v,int w)
    19 {
    20     edge[++sumedge]=Edge(v,head[u],w);
    21     head[u]=sumedge;
    22 }
    23 
    24 struct Node
    25 {
    26     int now,dis;
    27     bool operator < (const Node &x) const
    28     {
    29         return dis>x.dis;
    30     }
    31 };
    32 
    33 bool vis[N];
    34 int d1[N],d2[N];
    35 inline void Dijkstar()
    36 {
    37     for(int i=1;i<=n;i++) d1[i]=d2[i]=INF;
    38     priority_queue<Node>que; Node u,to;
    39     u.dis=d1[1]=0; vis[1]=1;
    40     u.now=1; que.push(u);
    41     for(int dis,v;!que.empty();)
    42     {
    43         u=que.top();que.pop();
    44         if(u.dis>d2[u.now]) continue;
    45         for(int i=head[u.now];i;i=edge[i].next)
    46         {
    47             v=edge[i].v;
    48             dis=u.dis+edge[i].w;
    49             if(dis<d1[v])
    50             {
    51                 swap(dis,d1[v]);
    52                 to.now=v;
    53                 to.dis=d1[v];
    54                 que.push(to);
    55             }
    56             if(dis>d1[v]&&dis<d2[v])
    57             {
    58                 d2[v]=dis;
    59                 to.dis=d2[v];
    60                 to.now=v;
    61                 que.push(to);
    62             }
    63         }
    64     } 
    65 }
    66 
    67 inline void read(int &x)
    68 {
    69     x=0; register char ch=getchar();
    70     for(;ch>'9'||ch<'0';) ch=getchar();
    71     for(;ch>='0'&&ch<='9';ch=getchar()) x=x*10+ch-'0';
    72 }
    73 
    74 int AC()
    75 {
    76 #define MINE
    77 #ifdef MINE
    78     freopen("block.in","r",stdin);
    79     freopen("block.out","w",stdout);
    80 #endif
    81 
    82     read(n),read(m);
    83     for(int v,u,w;m--;ins(u,v,w),ins(v,u,w))
    84         read(u),read(v),read(w);
    85     Dijkstar();
    86     printf("%d
    ",d2[n]);
    87     return 0;
    88 }
    89 
    90 int I_want_AC=AC();
    91 int main(){;}
    Dijkstra AC
    ——每当你想要放弃的时候,就想想是为了什么才一路坚持到现在。
  • 相关阅读:
    springmvc中@PathVariable和@RequestParam的区别
    Spring MVC 学习总结(一)——MVC概要与环境配置
    web中session与序列化的问题
    EL表达式
    JSTL自定义标签
    [c++][语言语法]stringstream iostream ifstream
    [C++][语言语法]标准C++中的string类的用法总结
    [数据库]数据库查询语句
    [c++][语言语法]函数模板和模板函数 及参数类型的运行时判断
    机器学习算法汇总
  • 原文地址:https://www.cnblogs.com/Shy-key/p/7421200.html
Copyright © 2011-2022 走看看