http://acm.hdu.edu.cn/showproblem.php?pid=2444
Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7087 Accepted Submission(s): 3168
Problem Description
There are a group of students. Some of them may know each other, while others don't. For example, A and B know each other, B and C know each other. But this may not imply that A and C know each other.
Now you are given all pairs of students who know each other. Your task is to divide the students into two groups so that any two students in the same group don't know each other.If this goal can be achieved, then arrange them into double rooms. Remember, only paris appearing in the previous given set can live in the same room, which means only known students can live in the same room.
Calculate the maximum number of pairs that can be arranged into these double rooms.
Now you are given all pairs of students who know each other. Your task is to divide the students into two groups so that any two students in the same group don't know each other.If this goal can be achieved, then arrange them into double rooms. Remember, only paris appearing in the previous given set can live in the same room, which means only known students can live in the same room.
Calculate the maximum number of pairs that can be arranged into these double rooms.
Input
For each data set:
The first line gives two integers, n and m(1<n<=200), indicating there are n students and m pairs of students who know each other. The next m lines give such pairs.
Proceed to the end of file.
The first line gives two integers, n and m(1<n<=200), indicating there are n students and m pairs of students who know each other. The next m lines give such pairs.
Proceed to the end of file.
Output
If these students cannot be divided into two groups, print "No". Otherwise, print the maximum number of pairs that can be arranged in those rooms.
Sample Input
4 4
1 2
1 3
1 4
2 3
6 5
1 2
1 3
1 4
2 5
3 6
Sample Output
No
3
Source
Recommend
蒟蒻无脑法:二分图染色+二分图匹配模板
代码好诡异
1 #include <algorithm> 2 #include <cstring> 3 #include <cstdio> 4 #include <queue> 5 6 using namespace std; 7 8 const int N(233); 9 int n,m,head[N],sumedge; 10 struct Edge 11 { 12 int v,next; 13 Edge(int v=0,int next=0):v(v),next(next){} 14 }edge[233333]; 15 inline void ins(int u,int v) 16 { 17 edge[++sumedge]=Edge(v,head[u]); 18 head[u]=sumedge; 19 edge[++sumedge]=Edge(u,head[v]); 20 head[v]=sumedge; 21 } 22 23 int col[N]; 24 bool Paint(int x) 25 { 26 col[x]=0; 27 queue<int>que; 28 que.push(x); 29 for(int u,v;!que.empty();) 30 { 31 u=que.front(); que.pop(); 32 for(int i=head[u];i;i=edge[i].next) 33 { 34 v=edge[i].v; 35 if(col[v]!=-1) 36 { 37 if(col[v]==col[u]) 38 return false; 39 } 40 else 41 { 42 col[v]=col[u]^1; 43 que.push(v); 44 } 45 } 46 } 47 return true; 48 } 49 50 int sumvis,vis[N],match[N],Map[N][N]; 51 bool find(int u) 52 { 53 /*for(int v,i=head[i];i;i=edge[i].next) 54 { 55 v=edge[i].v; 56 if(!vis[v]) 57 { 58 vis[v]=1; 59 if(!match[v]||find(match[v])) 60 { 61 match[v]=u; 62 return true; 63 } 64 } 65 }*/ 66 for(int v=1;v<=n;v++) 67 if(Map[u][v]&&!vis[v]) 68 { 69 vis[v]=1; 70 if(!match[v]||find(match[v])) 71 { 72 match[v]=u; 73 return true; 74 } 75 } 76 return false; 77 } 78 79 inline void init() 80 { 81 memset(edge,0,sizeof(edge)); 82 memset(head,0,sizeof(head)); 83 memset(match,0,sizeof(match)); 84 } 85 86 int main() 87 { 88 for(;~scanf("%d%d",&n,&m);init()) 89 { 90 int ans=0,flag=0;sumvis=0; 91 memset(Map,0,sizeof(Map)); 92 for(int u,v;m--;ins(u,v)) 93 scanf("%d%d",&u,&v),Map[u][v]=1; 94 memset(col,-1,sizeof(col)); 95 for(int i=1;i<=n;i++) 96 if(col[i]==-1) 97 if(!Paint(i)) 98 { 99 flag=1; 100 break; 101 } 102 if(flag) 103 { 104 puts("No"); 105 continue; 106 } 107 for(int i=1;i<=n;i++) 108 { 109 if(find(i)) ans++; 110 memset(vis,0,sizeof(vis)); 111 } 112 printf("%d ",ans); 113 } 114 return 0; 115 }