zoukankan      html  css  js  c++  java
  • UVa 437 The Tower of Babylon

    Description

     

    Perhaps you have heard of the legend of the Tower of Babylon. Nowadays many details of this tale have been forgotten. So now, in line with the educational nature of this contest, we will tell you the whole story:

    The babylonians had n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions tex2html_wrap_inline32 . A block could be reoriented so that any two of its three dimensions determined the dimensions of the base and the other dimension was the height. They wanted to construct the tallest tower possible by stacking blocks. The problem was that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly smaller than the corresponding base dimensions of the lower block. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.

    Your job is to write a program that determines the height of the tallest tower the babylonians can build with a given set of blocks.

    Input and Output

    The input file will contain one or more test cases. The first line of each test case contains an integer n, representing the number of different blocks in the following data set. The maximum value for n is 30. Each of the next n lines contains three integers representing the values tex2html_wrap_inline40 , tex2html_wrap_inline42 and tex2html_wrap_inline44 .

    Input is terminated by a value of zero (0) for n.

    For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Casecase: maximum height =height"

    Sample Input

    1
    10 20 30
    2
    6 8 10
    5 5 5
    7
    1 1 1
    2 2 2
    3 3 3
    4 4 4
    5 5 5
    6 6 6
    7 7 7
    5
    31 41 59
    26 53 58
    97 93 23
    84 62 64
    33 83 27
    0

    Sample Output

    Case 1: maximum height = 40
    Case 2: maximum height = 21
    Case 3: maximum height = 28
    Case 4: maximum height = 342

    动态规划,每次枚举立方体三边之一为高,并将另外两边作为长和宽,看能否放下。

    需要记忆化

     1 /*by SilverN*/
     2 #include<iostream>
     3 #include<algorithm>
     4 #include<cstring>
     5 #include<cstdio>
     6 #include<cmath>
     7 using namespace std;
     8 int e[50][3];//存储立方体的三边 
     9 int f[50][3];
    10 int n,cnt=0;
    11 void pd(int a,int &b,int &c){
    12     switch (a){
    13         case 1:{b=0;c=2;break;}
    14         case 2:{b=0;c=1;break;}
    15         case 0:{b=1;c=2;break;}
    16     }
    17     return;
    18 }
    19 int sol(int k,int h){
    20     if(f[k][h])return f[k][h];//记忆化
    21     int i,j;
    22     int x1,y1;
    23     pd(h,x1,y1);
    24     int x2,y2;
    25     for(i=1;i<=n;i++)
    26       for(j=0;j<=2;j++){//枚举高 
    27           pd(j,x2,y2);
    28           if((e[i][x2]>e[k][x1] && e[i][y2]>e[k][y1])||
    29            (e[i][y2]>e[k][x1] && e[i][x2]>e[k][y1]))
    30           {
    31               f[k][h]=max(f[k][h],sol(i,j));//递归求解    
    32           }
    33       }
    34     f[k][h]+=e[k][h];
    35     return f[k][h];
    36 }
    37 int main(){
    38     int i,j;
    39     int ans;
    40     while(scanf("%d",&n) && n){
    41         ans=0;
    42         memset(f,0,sizeof(f));
    43         for(i=1;i<=n;i++)
    44               scanf("%d%d%d",&e[i][0],&e[i][1],&e[i][2]);
    45         for(i=1;i<=n;i++)
    46           for(j=0;j<=2;j++)
    47             ans=max(ans,sol(i,j));
    48         printf("Case %d: maximum height = %d
    ",++cnt,ans);
    49     }
    50     return 0;
    51 }
  • 相关阅读:
    mysql存储过程基本函数
    Java多线程程序设计详细解析
    手把手教你写Undo、Redo程序
    mysql存储过程学习总结-操作符
    深入解析ATL第二版(ATL8.0)笔记--(2.3节)
    mysql 5.0存储过程学习总结
    php判断浏览器和语言
    Windows7系统环境安装配置PHP开发环境
    Nginx环境下Php安装
    php学习
  • 原文地址:https://www.cnblogs.com/SilverNebula/p/5582441.html
Copyright © 2011-2022 走看看