zoukankan      html  css  js  c++  java
  • POJ3264 Balanced Lineup

    Balanced Lineup
    Time Limit: 5000MS   Memory Limit: 65536K
    Total Submissions: 44720   Accepted: 20995
    Case Time Limit: 2000MS

    Description

    For the daily milking, Farmer John's N cows (1 ≤ N ≤ 50,000) always line up in the same order. One day Farmer John decides to organize a game of Ultimate Frisbee with some of the cows. To keep things simple, he will take a contiguous range of cows from the milking lineup to play the game. However, for all the cows to have fun they should not differ too much in height.

    Farmer John has made a list of Q (1 ≤ Q ≤ 200,000) potential groups of cows and their heights (1 ≤ height ≤ 1,000,000). For each group, he wants your help to determine the difference in height between the shortest and the tallest cow in the group.

    Input

    Line 1: Two space-separated integers, N and Q
    Lines 2..N+1: Line i+1 contains a single integer that is the height of cow i 
    Lines N+2..N+Q+1: Two integers A and B (1 ≤ A ≤ B ≤ N), representing the range of cows from A to B inclusive.

    Output

    Lines 1..Q: Each line contains a single integer that is a response to a reply and indicates the difference in height between the tallest and shortest cow in the range.

    Sample Input

    6 3
    1
    7
    3
    4
    2
    5
    1 5
    4 6
    2 2

    Sample Output

    6
    3
    0

    Source

    ST算法求区间内最值

     1 #include<algorithm>
     2 #include<iostream>
     3 #include<cstdio>
     4 #include<cstring>
     5 #include<cmath>
     6 using namespace std;
     7 const int mxn=60000;
     8 int n,Q;
     9 int h[mxn];
    10 int fmx[mxn][20],fmi[mxn][20];//f[i][j]表示从i开始到i*(1<<j)范围内的目标值 
    11 int ST(int a,int b){//ST算法,倍增求区间最值 
    12     int i,j;
    13     for(i=1;i<=n;i++){//自身 
    14         fmx[i][0]=fmi[i][0]=h[i];
    15     }
    16     int k=(int)(log(n*1.0)/log(2.0));//k=以2为底n的对数 
    17     for(i=1;i<=k;i++){//第一层为次数 
    18         for(j=1;j<=n;j++){//第二层为范围 
    19             fmx[j][i]=fmx[j][i-1];
    20             if(j+(1<<(i-1)) <=n)
    21                 fmx[j][i]=max(fmx[j][i],fmx[j+(1<<(i-1))][i-1]);
    22             fmi[j][i]=fmi[j][i-1];
    23             if(j+(1<<(i-1)) <=n)
    24                 fmi[j][i]=min(fmi[j][i],fmi[j+(1<<(i-1))][i-1]);
    25         }
    26     }
    27     return 0;
    28 }
    29 int ansmx(int a,int b){//查找最大值 
    30     int k=(int)(log(b-a+1.0)/log(2.0));
    31     return max(fmx[a][k],fmx[b-(1<<k)+1][k]);
    32 }
    33 int ansmi(int a,int b){//查找最小值 
    34     int k=(int)(log(b-a+1.0)/log(2.0));
    35     return min(fmi[a][k],fmi[b-(1<<k)+1][k]);
    36 }
    37 int main(){
    38     scanf("%d%d",&n,&Q);
    39     int i,j;
    40     for(i=1;i<=n;i++){
    41         scanf("%d",&h[i]);
    42     }
    43     int a,b;
    44     ST(1,n);
    45     for(i=1;i<=Q;i++){
    46         scanf("%d%d",&a,&b);
    47         printf("%d
    ",ansmx(a,b)-ansmi(a,b));//输出询问区间内最大值和最小值的差 
    48     }
    49     return 0;
    50 }
  • 相关阅读:
    程序的版式
    文件结构
    LIB和DLL的区别与使用
    静态链接库
    C++ Vector
    C++ Map
    C++ List
    快速实现十进制向二进制转换
    Fail2ban 运维管理 服务控制
    Fail2ban 配置详解 动作配置
  • 原文地址:https://www.cnblogs.com/SilverNebula/p/5638900.html
Copyright © 2011-2022 走看看