zoukankan      html  css  js  c++  java
  • POJ 3243 Clever Y

     
    Time Limit: 5000MS   Memory Limit: 65536KB   64bit IO Format: %I64d & %I64u

    Description

    Little Y finds there is a very interesting formula in mathematics:

    XY mod Z = K

    Given X, Y, Z, we all know how to figure out K fast. However, given X, Z, K, could you figure out Y fast?

    Input

    Input data consists of no more than 20 test cases. For each test case, there would be only one line containing 3 integers X, Z, K (0 ≤ X, Z, K ≤ 10 9).
    Input file ends with 3 zeros separated by spaces.

    Output

    For each test case output one line. Write "No Solution" (without quotes) if you cannot find a feasible Y (0 ≤ Y < Z). Otherwise output the minimum Y you find.

    Sample Input

    5 58 33
    2 4 3
    0 0 0
    

    Sample Output

    9
    No Solution
    

    Source

    依旧是离散对数。

    和POJ2417基本相同:

    http://www.cnblogs.com/SilverNebula/p/5668380.html

    不同之处是这道题的X Z K没有特殊限制,可能不是质数,传统的做法应该是不断转化式子直到gcd(a',n')==1 ,然后再BSGS

    代码参照Orion_Rigel的题解http://blog.csdn.net/orion_rigel/article/details/51893151

    然而套用了之前2417的代码,发现能AC

    也是神奇

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<algorithm>
     5 #include<cmath>
     6 #define LL long long
     7 using namespace std;
     8 const int mop=100007;
     9 const int mxn=100020;
    10 int hash[mxn],hd[mxn],id[mxn],next[mxn],cnt;
    11 
    12 LL gcd(LL a,LL b){
    13     return (b==0)?a:gcd(b,a%b);
    14 }
    15 void ins(LL x,LL y){
    16     int k=x%mop;
    17     hash[++cnt]=x;
    18     id[cnt]=y;next[cnt]=hd[k];hd[k]=cnt;
    19     return;
    20 }
    21 LL find(LL x){
    22     int k=x%mop;
    23     for(int i=hd[k];i;i=next[i]){
    24         if(hash[i]==x)return id[i];
    25     }
    26     return -1;
    27 }
    28 LL BSGS(int a,int b,int n){
    29     memset(hd,0,sizeof hd);
    30     cnt=0;
    31     if(!b)return 0;
    32     int m=sqrt(n),i,j;
    33     LL x=1,p=1;
    34     for(i=0;i<m;i++,p=p*a%n)ins(p*b%n,i);
    35     for(LL i=m;;i+=m){
    36         x=x*p%n;
    37         if((j=find(x))!=-1)return i-j;
    38         if(i>n)break;
    39     }
    40     return -1;
    41 }
    42 int main(){
    43     int x,z,k;
    44     while(scanf("%d%d%d",&x,&z,&k)!=EOF){
    45         if(!x && !z && !k)break;
    46         int ans=BSGS(x,k,z);
    47         if(ans==-1)printf("No Solution
    ");
    48         else printf("%d
    ",ans);
    49         
    50     }
    51     return 0;
    52 }
  • 相关阅读:
    2020寒假简记
    感知神经网络模型与学习算法
    信息检索模型与评估
    Diffie-Hellman密钥交换
    RSA密码体制
    MySQL基准测试(benchmark)
    MySQL数据引擎
    MySQL 多版本并发控制(MVCC)
    MySQL事务管理
    利用dotnet restore 导入本地 .nupkg 包
  • 原文地址:https://www.cnblogs.com/SilverNebula/p/5669810.html
Copyright © 2011-2022 走看看