zoukankan      html  css  js  c++  java
  • POJ3678 Katu Puzzle

    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 9238   Accepted: 3436

    Description

    Katu Puzzle is presented as a directed graph G(V, E) with each edge e(a, b) labeled by a boolean operator op (one of AND, OR, XOR) and an integer c (0 ≤ c ≤ 1). One Katu is solvable if one can find each vertex Vi a value Xi (0 ≤ Xi ≤ 1) such that for each edge e(a, b) labeled by op and c, the following formula holds:

     Xa op Xb = c

    The calculating rules are:

    AND 0 1
    0 0 0
    1 0 1
    OR 0 1
    0 0 1
    1 1 1
    XOR 0 1
    0 0 1
    1 1 0

    Given a Katu Puzzle, your task is to determine whether it is solvable.

    Input

    The first line contains two integers N (1 ≤ N ≤ 1000) and M,(0 ≤ M ≤ 1,000,000) indicating the number of vertices and edges.
    The following M lines contain three integers a (0 ≤ a < N), b(0 ≤ b < N), c and an operator op each, describing the edges.

    Output

    Output a line containing "YES" or "NO".

    Sample Input

    4 4
    0 1 1 AND
    1 2 1 OR
    3 2 0 AND
    3 0 0 XOR

    Sample Output

    YES

    Hint

    X0 = 1, X1 = 1, X2 = 0, X3 = 1.

    Source

    只需要判断可行性,不用求值。

    2-sat妥妥的。

    模拟运算符模式连边,跑一边tarjan就行。

      1 #include<iostream>
      2 #include<cstdio>
      3 #include<cstring>
      4 #include<algorithm>
      5 #include<cmath>
      6 using namespace std;
      7 const int mxn=12000;
      8 //bas
      9 int n,m;
     10 //edge
     11 struct edge{
     12     int to;
     13     int next;
     14 }e[mxn*100];
     15 int hd[mxn],cnt=0;
     16 void add_edge(int u,int v){
     17     e[++cnt].next=hd[u];e[cnt].to=v;hd[u]=cnt;
     18 }
     19 
     20 //tarjan
     21 int vis[mxn];
     22 int dfn[mxn],low[mxn];
     23 int st[mxn],top;
     24 bool inst[mxn];
     25 int dtime=0;
     26 int belone[mxn],tot;
     27 void tarjan(int s){
     28     low[s]=dfn[s]=++dtime;
     29     st[++top]=s;
     30     inst[s]=1;
     31     for(int i=hd[s];i;i=e[i].next){
     32         int v=e[i].to;
     33         if(!dfn[v]){
     34             tarjan(v);
     35             low[s]=min(low[s],low[v]);
     36         }
     37         else if(inst[v]){
     38             low[s]=min(low[s],dfn[v]);
     39         }
     40     }
     41     int v;
     42     if(low[s]==dfn[s]){
     43         cnt++;
     44         do{    
     45             v=st[top--];
     46             inst[v]=0;
     47             belone[v]=cnt;
     48             
     49         }while(v!=s);
     50     }
     51     return;
     52 }
     53 void Build(int a,int b,int c,char op){
     54     switch(op){
     55         case 'A':{
     56             if(c==1){
     57                 add_edge(a+n,a);//原点表示选1, +n点表示0; 
     58                 add_edge(b+n,b);
     59                 add_edge(a,b);
     60                 add_edge(b,a);
     61                 
     62             }
     63             else{
     64                 add_edge(a,b+n);
     65                 add_edge(b,a+n);                
     66             }
     67             break;
     68         }
     69         case 'O':{
     70             if(c==1){
     71                 add_edge(a+n,b);
     72                 add_edge(b+n,a);
     73             }
     74             else{
     75                 add_edge(a,a+n); 
     76                 add_edge(b,b+n);
     77                 add_edge(a+n,b+n);
     78                 add_edge(b+n,a+n);
     79             }
     80             break;
     81         }
     82         case 'X':{
     83             if(c==1){
     84                 add_edge(a,b+n);
     85                 add_edge(b,a+n);
     86                 add_edge(a+n,b);
     87                 add_edge(b+n,a);
     88             }
     89             else{
     90                 add_edge(a,b);
     91                 add_edge(b,a);
     92                 add_edge(b+n,a+n);
     93                 add_edge(a+n,b+n);
     94             }
     95             break;
     96         }
     97         
     98     }
     99 }
    100 int main(){
    101     scanf("%d%d",&n,&m);
    102     int i,j;
    103     int a,b,c;
    104     char op[10];
    105     for(i=1;i<=m;i++){
    106         scanf("%d%d%d%s",&a,&b,&c,op);
    107         a++;b++;
    108         Build(a,b,c,op[0]);
    109     }
    110     for(i=1;i<=2*n;i++)if(!dfn[i])tarjan(i);
    111     for(i=1;i<=n;i++){
    112         if(belone[i]==belone[i+n] && belone[i]!=0){
    113             printf("NO
    ");
    114             return 0;
    115         }
    116     }
    117     printf("YES
    ");
    118     return 0;
    119 }
  • 相关阅读:
    ubuntu 安装 less
    Django orm增删改字段、建表 ,单表增删改查,Django请求生命周期
    python RabbitMQ队列使用
    80个Python练手项目列表
    celery异步任务体系笔记
    为什么要选择RabbitMQ ,RabbitMQ简介,各种MQ选型对比
    吞吐量(TPS)、QPS、并发数、响应时间(RT)
    Supervisor使用详解
    supervisor 使 celery后台运行
    celery Django 简单示例
  • 原文地址:https://www.cnblogs.com/SilverNebula/p/5674235.html
Copyright © 2011-2022 走看看