zoukankan      html  css  js  c++  java
  • POJ1385 Lifting the Stone

    There are many secret openings in the floor which are covered by a big heavy stone. When the stone is lifted up, a special mechanism detects this and activates poisoned arrows that are shot near the opening. The only possibility is to lift the stone very slowly and carefully. The ACM team must connect a rope to the stone and then lift it using a pulley. Moreover, the stone must be lifted all at once; no side can rise before another. So it is very important to find the centre of gravity and connect the rope exactly to that point. The stone has a polygonal shape and its height is the same throughout the whole polygonal area. Your task is to find the centre of gravity for the given polygon.

    Input

    The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing a single integer N (3 <= N <= 1000000) indicating the number of points that form the polygon. This is followed by N lines, each containing two integers Xi and Yi (|Xi|, |Yi| <= 20000). These numbers are the coordinates of the i-th point. When we connect the points in the given order, we get a polygon. You may assume that the edges never touch each other (except the neighboring ones) and that they never cross. The area of the polygon is never zero, i.e. it cannot collapse into a single line.

    Output

    Print exactly one line for each test case. The line should contain exactly two numbers separated by one space. These numbers are the coordinates of the centre of gravity. Round the coordinates to the nearest number with exactly two digits after the decimal point (0.005 rounds up to 0.01). Note that the centre of gravity may be outside the polygon, if its shape is not convex. If there is such a case in the input data, print the centre anyway. 

    Sample Input

    2
    4
    5 0
    0 5
    -5 0
    0 -5
    4
    1 1
    11 1
    11 11
    1 11
    

    Sample Output

    0.00 0.00
    6.00 6.00

    数学 几何 求多边形的重心

    三角形的重心是三个点坐标的平均值。

    对于n边形,可以将其剖分成n-2个三角形,求每个三角形的重心,并以三角形面积为权重,求出各重心坐标的加权平均值,就是多边形的重心

     1 /*by SilverN*/
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<cstring>
     5 #include<cstdio>
     6 #include<cmath>
     7 #include<vector>
     8 using namespace std;
     9 const int mxn=100010;
    10 int read(){
    11     int x=0,f=1;char ch=getchar();
    12     while(ch<'0' || ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    13     while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
    14     return x*f;
    15 }
    16 struct point{
    17     double x,y;
    18     point operator - (point rhs){return (point){x-rhs.x,y-rhs.y};}
    19     point operator + (point rhs){return (point){x+rhs.x,y+rhs.y};}
    20 }p[mxn];
    21 double Cross(point a,point b){return a.x*b.y-a.y*b.x;}
    22 int n;
    23 double smm;
    24 double SX,SY;
    25 int main(){
    26     int i,j;
    27     int T=read();
    28     while(T--){
    29         smm=SX=SY=0;
    30         n=read();
    31         for(i=1;i<=n;i++){
    32             p[i].x=read();p[i].y=read();
    33         }
    34 //        p[n+1]=p[1];
    35         for(i=2;i<n;i++){
    36             double tmp=Cross(p[i]-p[1],p[i+1]-p[1]);
    37             SX+=(p[1].x+p[i+1].x+p[i].x)*tmp;
    38             SY+=(p[1].y+p[i+1].y+p[i].y)*tmp;
    39             smm+=tmp;
    40         }
    41         printf("%.2f %.2f
    ",SX/smm/3,SY/smm/3);
    42     }
    43     return 0;
    44 }
    本文为博主原创文章,转载请注明出处。
  • 相关阅读:
    Linux 系统中 sudo 命令的 10 个技巧
    如何在 Linux 中配置基于密钥认证的 SSH
    选择 NoSQL 数据库需要考虑的 10 个问题
    10 个 Linux 中方便的 Bash 别名
    扒一扒 EventServiceProvider 源代码
    [Binary Hacking] ABI and EABI
    瀑布流 ajax 预载入 json
    PHP5+标准函数库观察者之实现
    使用汇编分析c代码的内存分布
    but no declaration can be found for element &#39;aop:aspectj-autoproxy&#39;.
  • 原文地址:https://www.cnblogs.com/SilverNebula/p/6492442.html
Copyright © 2011-2022 走看看