zoukankan      html  css  js  c++  java
  • HDU3518 Boring counting

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 3182    Accepted Submission(s): 1319


    Problem Description
    035 now faced a tough problem,his english teacher gives him a string,which consists with n lower case letter,he must figure out how many substrings appear at least twice,moreover,such apearances can not overlap each other.
    Take aaaa as an example.”a” apears four times,”aa” apears two times without overlaping.however,aaa can’t apear more than one time without overlaping.since we can get “aaa” from [0-2](The position of string begins with 0) and [1-3]. But the interval [0-2] and [1-3] overlaps each other.So “aaa” can not take into account.Therefore,the answer is 2(“a”,and “aa”).
     
    Input
    The input data consist with several test cases.The input ends with a line “#”.each test case contain a string consists with lower letter,the length n won’t exceed 1000(n <= 1000).
     
    Output
    For each test case output an integer ans,which represent the answer for the test case.you’d better use int64 to avoid unnecessary trouble.
     
    Sample Input
    aaaa ababcabb aaaaaa #
     
    Sample Output
    2 3 3
     
    Source
     
    Recommend
    zhengfeng

    字符串 后缀数组

    求至少不重叠出现2次以上的子串有多少个

    建立后缀数组,按height把后缀们分成不同的组,同一组内都是相同的后缀,统计它们出现的最大最小位置即可

     1 /*by SilverN*/
     2 #include<algorithm>
     3 #include<iostream>
     4 #include<cstring>
     5 #include<cstdio>
     6 #include<cmath>
     7 #include<vector>
     8 using namespace std;
     9 const int mxn=100010;
    10 int read(){
    11     int x=0,f=1;char ch=getchar();
    12     while(ch<'0' || ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    13     while(ch>='0' && ch<='9'){x=x*10+ch-'0';ch=getchar();}
    14     return x*f;
    15 }
    16 int sa[mxn],rk[mxn],ht[mxn];
    17 int wa[mxn],wb[mxn],wv[mxn],cnt[mxn];
    18 char s[mxn];
    19 inline int cmp(int *r,int a,int b,int l){
    20     return r[a]==r[b] && r[a+l]==r[b+l];
    21 }
    22 void GSA(int *sa,int n,int m){
    23     int i,j,k;
    24     int *x=wa,*y=wb;
    25     for(i=0;i<m;i++)cnt[i]=0;
    26     for(i=0;i<n;i++)cnt[x[i]=s[i]-'a'+1]++;
    27     for(i=1;i<m;i++)cnt[i]+=cnt[i-1];
    28     for(i=n-1;i>=0;i--)sa[--cnt[x[i]]]=i;
    29     for(int p=0,j=1;p<n;j<<=1,m=p){
    30         for(p=0,i=n-j;i<n;i++)y[p++]=i;
    31         for(i=0;i<n;i++)if(sa[i]>=j)y[p++]=sa[i]-j;
    32         for(i=0;i<n;i++)
    33             wv[i]=x[y[i]];
    34         for(i=0;i<m;i++)cnt[i]=0;
    35         for(i=0;i<n;i++)cnt[wv[i]]++;
    36         for(i=1;i<m;i++)cnt[i]+=cnt[i-1];
    37         for(i=n-1;i>=0;i--)sa[--cnt[wv[i]]]=y[i];
    38         swap(x,y);
    39         p=1;x[sa[0]]=0;
    40         for(i=1;i<n;i++)
    41             x[sa[i]]=cmp(y,sa[i],sa[i-1],j)?p-1:p++;
    42     }
    43     return;
    44 }
    45 void GHT(int n){
    46     int i,j,k=0;
    47     for(i=1;i<=n;i++)rk[sa[i]]=i;
    48     for(i=0;i<n;i++){
    49         if(k)k--;
    50         j=sa[rk[i]-1];
    51         while(s[i+k]==s[j+k])k++;
    52         ht[rk[i]]=k;
    53     }
    54     return;
    55 }
    56 int ans=0;
    57 bool solve(int n,int lim){
    58     bool flag=0;
    59     int mxpos=-100,mnpos=mxn;
    60     for(int i=1;i<=n;i++){
    61         if(ht[i]<lim){
    62             if(mxpos-mnpos>=lim){        
    63                 ans++;flag=1;
    64             }
    65             mxpos=-100,mnpos=mxn;
    66         }
    67         mxpos=max(mxpos,sa[i]);
    68         mnpos=min(mnpos,sa[i]);
    69     }
    70     if(mxpos-mnpos>=lim)flag=1,ans++;
    71     return flag;
    72 }
    73 int main(){
    74     int i,j;
    75     while(scanf("%s",s) && s[0]!='#'){
    76         int len=strlen(s);
    77         s[len]='a'-1;
    78         GSA(sa,len+1,28);
    79         GHT(len);
    80         ans=0;
    81 //        for(i=0;i<=len;i++)printf("%c",s[i]);puts("");
    82 //        for(i=1;i<=len;i++)printf("%d ",sa[i]);puts("");
    83 //        for(i=1;i<=len;i++)printf("%d ",ht[i]);puts("");
    84         for(i=1;i<len;i++){
    85             if(!solve(len,i))break;
    86         }
    87         printf("%d
    ",ans);
    88     }
    89     return 0;
    90 }
  • 相关阅读:
    矩阵Frobenius范数、核范数与奇异值的关系
    范数与正则化
    对偶上升法,增光拉格朗日乘子法,交替方向乘子法
    拉格朗日函数,拉格朗日对偶函数,KKT条件
    relint, 相对内点集的理解
    转:Mac 弹出App can’t be opened because Apple cannot check it for malicious software的解决方法
    数组分块1
    fzu 2275 Game [第八届福建省大学生程序设计竞赛 Problem D]
    fzu 2275 Game [第八届福建省大学生程序设计竞赛 Problem D]
    Plug-in CodeForces
  • 原文地址:https://www.cnblogs.com/SilverNebula/p/6648740.html
Copyright © 2011-2022 走看看