zoukankan      html  css  js  c++  java
  • 51nod1446 Kirchhoff矩阵+Gauss消元+容斥+折半DFS

    思路:

    //By SiriusRen
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    typedef long long ll;
    const int mod=1000000007;
    int cases,n,maxval,a[44][44],C[44][44],f[44],val[44],X,g[44];
    int top2,top,bgn,half,cnts2[22],allnum[44],Ans,T;
    struct Node{int wei,num;Node(){}Node(int x,int y){wei=x,num=y;}}s[5+(1<<20)],s2[5+(1<<20)];
    bool operator<(Node a,Node b){return a.wei<b.wei;}
    int pow(ll x,int y){
        ll res=1;
        while(y){
            if(y&1)res=res*x%mod;
            x=x*x%mod,y>>=1;
        }return (int)res;
    }
    int Gauss(int n){
        int f=1;
        for(int i=1;i<=n;i++){
            int j=i;while(!a[i][j]&&j<=n)j++;
            if(j==n+1)return 0;
            if(j!=i){
                for(int k=1;k<=n;k++)swap(a[i][k],a[j][k]);
                f*=-1;
            }
            int t=pow(a[i][i],mod-2);
            for(int j=i+1;j<=n;j++){
                int ww=1ll*a[j][i]*t%mod;
                for(int k=i;k<=n;k++)a[j][k]=(a[j][k]-1ll*ww*a[i][k]%mod+mod)%mod;
            }
        }
        ll ans=1;
        for(int i=1;i<=n;i++)ans=ans*a[i][i]%mod;
        if(f==-1)ans=(mod-ans)%mod;
        return ans;
    }
    void Kirchhoff(int x){
        memset(a,0,sizeof(a));
        for(int i=1;i<=n;i++)
            if(i<=x)for(int j=max(i+1,X+1);j<=n;j++)a[i][j]--,a[j][i]--,a[i][i]++,a[j][j]++;
            else for(int j=i+1;j<=n;j++)a[i][j]--,a[j][i]--,a[i][i]++,a[j][j]++;
    }
    bool cmp(int x,int y){return x>y;}
    void dfs(int x,int wei,int deep){
        !T?s[top++]=Node(wei,deep):s2[top2++]=Node(wei,deep);
        for(int i=x;i>bgn;i--)if(wei+val[i]<=maxval)dfs(i-1,wei+val[i],deep+1);
    }
    signed main(){
        for(int i=0;i<=40;i++){
            C[i][0]=C[i][i]=1;
            for(int j=1;j<i;j++)C[i][j]=(C[i-1][j-1]+C[i-1][j])%mod;
        }
        scanf("%d",&cases);
        while(cases--){
            memset(allnum,0,sizeof(allnum));
            memset(cnts2,0,sizeof(cnts2));
            top=top2=X=bgn=Ans=T=0;
            scanf("%d%d",&n,&maxval);
            for(int i=1;i<=n;i++){
                scanf("%d",&val[i]);
                if(~val[i])X++;
            }half=(X+1)/2;
            for(int i=0;i<=X;i++)Kirchhoff(i),f[i]=g[i]=Gauss(n-1);
            for(int i=X;~i;i--)
                for(int j=i+1;j<=X;j++)f[i]=((f[i]-1ll*C[X-i][j-i]*f[j])%mod+mod)%mod;
            sort(val+1,val+1+n,cmp),random_shuffle(val+1,val+1+X);
            dfs(half,0,0),sort(s,s+top);
            T=1,bgn=half,dfs(X,0,0),sort(s2,s2+top2);
            for(int i=0;i<top2;i++)cnts2[s2[i].num]++;
            for(int i=0,j=top2-1;i<top;i++){
                while(s[i].wei+s2[j].wei>maxval)cnts2[s2[j].num]--,j--;
                for(int k=0;k<=X-half;k++)(allnum[k+s[i].num]+=cnts2[k])%=mod;
            }
            for(int i=0;i<=X;i++)Ans=(Ans+1ll*f[X-i]*allnum[i])%mod;
            printf("%d
    ",(Ans+mod)%mod);
        }
    }
  • 相关阅读:
    简单的模板解析函数
    HTML通过事件传递参数到js 二 event
    HTML通过事件传递参数到js一
    通过this获取当前点击选项相关数据
    LeetCode 20. 有效的括号(Valid Parentheses)
    LeetCode 459. 重复的子字符串(Repeated Substring Pattern)
    LeetCode 14. 最长公共前缀(Longest Common Prefix)
    LeetCode 168. Excel表列名称(Excel Sheet Column Title)
    LeetCode 171. Excel表列序号(Excel Sheet Column Number) 22
    LeetCode 665. 非递减数列(Non-decreasing Array)
  • 原文地址:https://www.cnblogs.com/SiriusRen/p/7050565.html
Copyright © 2011-2022 走看看