zoukankan      html  css  js  c++  java
  • Triple Inversions

    Given a list of N integers A1​​, A2​​, A3​​,...AN​​, there's a famous problem to count the number of inversions in it. An inversion is defined as a piar of indices i<j such that Ai​​>Aj​​.

    Now we have a new challenging problem. You are supposed to count the number of triple inversions in it. As you may guess, a triple inversion is defined as a triple of indices i<j<k such that Ai​​>Aj​​>Ak​​. For example, in the list { 5, 1, 4, 3, 2 } there are 4 triple inversions, namely (5,4,3), (5,4,2), (5,3,2) and (4,3,2). To simplify the problem, the list A is given as a permutation of integers from 1 to N.

    Input Specification:

    Each input file contains one test case. For each case, the first line gives a positive integer N in [3]. The second line contains a permutation of integers from 1 to N and each of the integer is separated by a single space.

    Output Specification:

    For each case, print in a line the number of triple inversions in the list.

    Sample Input:

    22
    1 2 3 4 5 16 6 7 8 9 10 19 11 12 14 15 17 18 21 22 20 13
    
     

    Sample Output:

    8
     1 #include<bits/stdc++.h>
     2 #include<ext/pb_ds/assoc_container.hpp>
     3 using namespace std;
     4 using namespace __gnu_pbds;
     5 int main()
     6 {
     7 //    freopen("data.txt","r",stdin);
     8     tree<long long,null_type,less<long long>,rb_tree_tag,tree_order_statistics_node_update> tr;
     9     long long n,x,s=0;
    10     long long r,b;
    11     scanf("%lld",&n);
    12     for(long long i=1;i<=n;i++)
    13     {
    14         scanf("%lld",&x);
    15         tr.insert(x);
    16         r=tr.size()-tr.order_of_key(x)-1;
    17         b=r-i+x;
    18         s=s+r*b;
    19     }
    20     printf("%lld",s);
    21     return 0;
    22 }
    诚者,君子之所守也。
  • 相关阅读:
    LeetCode(122. 买卖股票的最佳时机 II)
    LeetCode(485. 最大连续1的个数)

    约瑟夫问题
    链表
    队列
    稀疏数组
    乐优商城项目学习
    LeetCode_Climbing Stairs
    数据结构&&算法基础知识
  • 原文地址:https://www.cnblogs.com/SkystarX/p/12285805.html
Copyright © 2011-2022 走看看