zoukankan      html  css  js  c++  java
  • KMeans聚类算法

    from pyspark.ml.clustering import KMeans, KMeansModel
    from pyspark import SparkContext
    from pyspark.sql import SparkSession, Row
    from pyspark.ml.linalg import Vector, Vectors

    sc = SparkContext('local','KMeans聚类算法')
    spark = SparkSession.builder.master('local').appName('KMeans聚类算法').getOrCreate()

    def f(x):
    rel={}
    rel['features'] = Vectors.dense(float(x[0]), float(x[1]), float(x[2]), float(x[3]))
    return rel

    df = sc.textFile("file:///usr/local/spark/mycode/exercise/iris.txt").map(lambda line: line.split(",")).map(lambda p: Row(**f(p))).toDF()

    kmeansmodel = KMeans().setFeaturesCol('features').setPredictionCol('prediction').fit(df)

    results = kmeansmodel.transform(df).collect()
    # for item in results:
    # print(str(item[0])+' is predcted as cluster'+ str(item[1]))

    results2 = kmeansmodel.clusterCenters()
    # for item in results2:
    # print(item)

    kemdata=kmeansmodel.computeCost(df)
    print(kemdata)
  • 相关阅读:
    第三周课程总结实验报告
    Java第二周学习总结
    2019春总结作业
    第十二周作业
    第十一周作业
    第十周作业
    第九周作业
    第八周作业
    第二周课程总结
    2019春总结
  • 原文地址:https://www.cnblogs.com/SoftwareBuilding/p/9525023.html
Copyright © 2011-2022 走看看