zoukankan      html  css  js  c++  java
  • Traditional Algorithms Never Die As They Can Find Their Position In Deep Neural Networks

    [1] Liu, S., De Mello, S., Gu, J., Zhong, G., Yang, M. H., & Kautz, J. (2017). Learning affinity via spatial propagation networks. In NIPS2017.

    [2] Pan, X., Shi, J., Luo, P., Wang, X., & Tang, X. (2017). Spatial As Deep: Spatial CNN for Traffic Scene Understanding. In AAAI2018.

    [3] Conditional Random Fields as Recurrent Neural Networks

    [4] Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs

    [5] Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

    Neural Network, CNN in particular, is not omnipotent in many computer vision tasks by itself, thus the need for traditional algorithms such as CRF arises.

    Take Instance or semantic segmantation for example,  popular methods such as FCN are giving coarse results, but if we apply an extra step using CRF to 

    refine the result given by FCN, we can improve the result to a whole new level.

    TBA

  • 相关阅读:
    git reset 用法
    print、println、printf的区别
    GoLang(2)
    GoLang
    OpenCV 图像叠加or图像混合加权实现
    openpyxl
    EJB 的理解
    inotify-tool实时监控服务器文件状态变化 学习总结
    使用docker 安装maven私服 nexus
    dockerfile 学习总结
  • 原文地址:https://www.cnblogs.com/SongHaoran/p/8692663.html
Copyright © 2011-2022 走看看