2019.10.11考试报告
时间安排:
T1:1.5h
T2:1h
T3:0.5h
考场思路:
T1:一开始的时候想用线段树做,然后线段树写炸了,在一个单点修改上出现了问题,改用暴力做,时间复杂度O(n*q),,得了四十分
T2:一开始想用Floyd做,发现数据范围太大了,改成用拓扑排序来做
T3:本来想拿个十分的部分分,发现十分的部分分也不会写
答题情况:
T1:50
T2:64
T3:0
题目分析:
T1:题目上写的线段树,可实际上和线段树一点关系也没有,就是用一个数组储存操作3的次数,然后在每次进行操作1、2的时候,先进行一次判断,如果小于操作的次数,那就先把这个数改成最近的一次操作3的值后再进行处理,如果等于,那么就说明已经处理过,就直接处理就好了,时间复杂度:O(q)
T2:拓扑排序,数据范围太大,fFloyd,dij,spfa都会超时,所以我们就要想另外的方法,根据题目的要求,求一个最长路,那么该图一定是一个有向无环图,(如果有环,那么最长路就是+∞了)。有向无环图又叫拓扑图,可用拓扑排序+DP做。然后就打一个拓扑排序+DP就好了
T3:一条链的情况:当为一条链时,最大值一定是两个端点之一,最小值一定在某一个点上。期望得分:10分
正解:
T1:
#include<iostream> #include<cstdio> #include<cstring> #include<map> #include<ctype.h> #define int long long int using namespace std; const int MAXSIZE=50000020; //读入缓存大小,不要改动 int bufpos; char buf[MAXSIZE]; int read(){ //读入一个int类型的整数 int val = 0; for(; buf[bufpos] < '0' || buf[bufpos] > '9'; bufpos ++); for(; buf[bufpos] >= '0' && buf[bufpos] <= '9'; bufpos ++) val = val * 10 + buf[bufpos] - '0'; return val; } int a[10000010]; int b[10000010]; int ans; int tag,lazy; signed main() { freopen("segmenttree.in","r",stdin); freopen("segmenttree.out","w",stdout); buf[fread(buf, 1, MAXSIZE, stdin)] = '