题意即,从所有小于(m)的质数中,选出(n)个数,使它们异或和为(0)的方案数。
令(G(x)=[x是质数]),其实就是对(G(x))做(n)次异或卷积后得到多项式的第(0)项。
如果(n)很小,可以一次次的FWT。事实上在第一次FWT之后,直接快速幂就行了,不需要中间IFWT转回去。
//1652kb 4352ms
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
#define inv2 500000004
#define mod 1000000007
#define Add(x,y) (x+y>=mod?x+y-mod:x+y)
#define Sub(x,y) (x<y?x-y+mod:x-y)
typedef long long LL;
const int N=65540;
int not_P[N],P[N>>2];
inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
void Init(int n)
{
not_P[1]=1;
for(int i=2,cnt=0; i<=n; ++i)
{
if(!not_P[i]) P[++cnt]=i;
for(int j=1; j<=cnt&&i*P[j]<=n; ++j)
{
not_P[i*P[j]]=1;
if(!(i%P[j])) break;
}
}
}
void FWT(int *a,int lim,int opt)
{
for(int i=2; i<=lim; i<<=1)
for(int j=0,mid=i>>1; j<lim; j+=i)
for(int k=j,x,y; k<j+mid; ++k)
{
x=a[k],y=a[k+mid];
a[k]=Add(x,y), a[k+mid]=Sub(x,y);
if(opt==-1) a[k]=1ll*a[k]*inv2%mod, a[k+mid]=1ll*a[k+mid]*inv2%mod;
}
}
void FP(int *x,int *t,int n,int k)
{
for(; k; k>>=1)
{
if(k&1) for(int i=0; i<n; ++i) t[i]=1ll*t[i]*x[i]%mod;
for(int i=0; i<n; ++i) x[i]=1ll*x[i]*x[i]%mod;
}
}
int main()
{
static int A[N],res[N];
Init(50000);
int n,m;
while(~scanf("%d%d",&n,&m))
{
memset(A,0,sizeof A);
for(int i=1; i<=m; ++i) A[i]=!not_P[i];
int lim=1; while(lim<=m) lim<<=1;
FWT(A,lim,1);
for(int i=0; i<lim; ++i) res[i]=A[i];
FP(A,res,lim,n-1), FWT(res,lim,-1);
printf("%d
",res[0]);
}
return 0;
}