zoukankan      html  css  js  c++  java
  • AGC 007D.Shik and Game(DP)

    题目链接

    (Description)

    数轴上有一个人,从(0)出发到(E),速度为(1)。数轴上还有(n)只熊,每只熊会在经过后的(T)时刻后产生一个金币。给定(E,T)以及(n)个熊的坐标(p_i),求收集完所有金币并到达(E)的最短时间。
    (nleq10^5,quad E,Tleq10^9)

    (Solution)

    (f_i)表示当前(1sim i)只熊的金币已经收集完,且现在在(p_i)处的最短时间。
    每次一定是路过一段的熊,然后回去吃完金币再回到(i)
    那么有:$$f_i=min{f_j+p_i-p_j+max{T, 2(p_i-p_{j+1})}}$$

    其实(p_i-p_j)这一部分是必走的(就是从(0)(E)),不需要考虑,可以最后直接加个总时间(E)
    所以$$f_i=min{f_j+max{T, 2(p_i-p_{j+1})}}$$

    尝试对这个(max)分类讨论一下。
    假如我们维护最接近原点且满足(T>2(p_i-p_{j+1}))的位置(j),那么方程就是(f_i=min{f_j+T})
    而对于不要的那些满足(Tleq2(p_i-p_{j+1}))(j)(f_i=min{f_j+2p_i-2p_{j+1}}),只要记录这些(j)(f_j-2p_{j+1})的最小值就可以了(是段前缀)。

    复杂度(O(n))

    //4ms	2304KB
    #include <cstdio>
    #include <cctype>
    #include <algorithm>
    //#define gc() getchar()
    #define MAXIN 1000000
    #define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
    typedef long long LL;
    const int N=1e5+5;
    
    int p[N];
    LL f[N];
    char IN[MAXIN],*SS=IN,*TT=IN;
    
    inline int read()
    {
    	int now=0;register char c=gc();
    	for(;!isdigit(c);c=gc());
    	for(;isdigit(c);now=now*10+c-'0',c=gc());
    	return now;
    }
    
    int main()
    {
    	int n=read(),E=read(),T=read();
    	for(int i=1; i<=n; ++i) p[i]=read();
    	LL mn=1e16;
    	for(int i=1,j=0; i<=n; ++i)
    	{
    		while(T<=2*(p[i]-p[j+1])) mn=std::min(mn,f[j]-2*p[j+1]), ++j;
    		if(j!=i) f[i]=std::min(f[j]+T,mn+2*p[i]);
    		else f[i]=mn+2*p[i];
    	}
    	printf("%lld
    ",f[n]+E);
    
    	return 0;
    }
    
  • 相关阅读:
    MySQL数据库之索引
    python面向对象编程
    linux端口占用
    lintcode
    java基础
    lintcode
    linux 常用命令
    Docker & Kubernates
    angular preparation
    java 命令行
  • 原文地址:https://www.cnblogs.com/SovietPower/p/10096656.html
Copyright © 2011-2022 走看看