zoukankan      html  css  js  c++  java
  • BZOJ.4517.[SDOI2016]排列计数(错位排列 逆元)

    题目链接

    错位排列(D_n=(n-1)*(D_{n-1}+D_{n-2})),表示(n)个数都不在其下标位置上的排列数。
    那么题目要求的就是(C_n^m*D_{n-m})
    阶乘分母部分的逆元可以线性处理,不需要扩欧。

    //13516kb	6784ms
    #include <cstdio>
    #include <cctype>
    #include <algorithm>
    //#define gc() getchar()
    #define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
    #define MAXIN 1000000
    #define p (1000000007)
    typedef long long LL;
    const int N=1e6+5;
    
    int inv_fac[N],fac[N],D[N];
    char IN[MAXIN],*SS=IN,*TT=IN;
    
    inline int read()
    {
    	int now=0;register char c=gc();
    	for(;!isdigit(c);c=gc());
    	for(;isdigit(c);now=now*10+c-'0',c=gc());
    	return now;
    }
    void Init()
    {
    	D[1]=0, inv_fac[0]=inv_fac[1]=fac[0]=fac[1]=D[0]=D[2]=1;
    	for(int i=2; i<N; ++i){
    		inv_fac[i]=1ll*(p-p/i)*inv_fac[p%i]%p,
    		fac[i]=1ll*fac[i-1]*i%p;
    	}
    	for(int i=3; i<N; ++i) inv_fac[i]=1ll*inv_fac[i]*inv_fac[i-1]%p;
    	for(int i=3; i<N; ++i) D[i]=1ll*(i-1)*(D[i-1]+D[i-2])%p;
    }
    
    int main()
    {
    	Init();
    	int T=read(),n,m;
    	while(T--)
    		n=read(),m=read(),printf("%lld
    ",(1ll*fac[n]*inv_fac[m]%p*inv_fac[n-m]%p*D[n-m]%p));
    
    	return 0;
    }
    

    考试时:这(O(n^2))(70)分不是送吗。。然后(10^4)的范围询问那么多,离线排个序 (O(10^8)) 3s很稳吧。。
    然后写,发现不过样例。。发现主要是(f[i][0])不对。比着dfs看,把规律找出来了:(f[i][0]=(i-1)*f[i-1][0]+f[i-1][1])。(之前想漏个地方)
    然后数据范围错了woc!是(10^6)
    然后就(70)分了。

    #include <cstdio>
    #include <cctype>
    #include <algorithm>
    //#define gc() getchar()
    #define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
    #define MAXIN 1000000
    #define mod (1000000007)
    typedef long long LL;
    const int N=1505;
    
    int T,f[N+3][N+3],g[2][10005],Ans[500005];
    char IN[MAXIN],*SS=IN,*TT=IN;
    struct Ques{
    	int x,y,id;
    	bool operator <(const Ques &a)const{
    		return x==a.x?y<a.y:x<a.x;
    	}
    }q[500005];
    
    inline int read()
    {
    	int now=0;register char c=gc();
    	for(;!isdigit(c);c=gc());
    	for(;isdigit(c);now=now*10+c-'0',c=gc());
    	return now;
    }
    void Init()
    {
    	LL tmp;
    	f[1][1]=f[2][0]=f[2][2]=1, f[1][0]=f[2][1]=0;
    	for(int i=3; i<N; ++i)
    	{
    		tmp=1ll*f[i-1][0]*(i-1)+(LL)f[i-1][1];
    		f[i][0]=(tmp%mod), f[i][i]=1;
    		for(int j=1; j<i; ++j)
    		{
    			tmp=1ll*f[i-1][j]*(i-j-1)+1ll*f[i-1][j+1]*(j+1)+(LL)f[i-1][j-1];
    			f[i][j]=(tmp%mod);
    		}
    	}
    }
    void Violence()
    {
    	Init();
    	for(int i=1; i<=T; ++i) printf("%d
    ",f[q[i].x][q[i].y]);
    }
    void Get_Ans(int n)
    {
    	int pos=1;
    	while(q[pos].x==1) Ans[q[pos].id]=q[pos].y, ++pos;
    	while(q[pos].x==2) Ans[q[pos].id]=std::abs(1-q[pos].y), ++pos;
    	int now=1,las=0; LL tmp;
    	g[0][0]=g[0][2]=1, g[0][1]=0;
    	for(int i=3; i<=n; ++i)
    	{
    		tmp=1ll*g[las][0]*(i-1)+(LL)g[las][1];
    		g[now][0]=(tmp%mod), g[now][i]=1;
    		while(!(q[pos].y) && q[pos].x==i) Ans[q[pos].id]=g[now][0], ++pos;
    
    		for(int j=1; j<i; ++j)
    		{
    			tmp=1ll*g[las][j]*(i-j-1)+1ll*g[las][j+1]*(j+1)+(LL)g[las][j-1];
    			g[now][j]=(tmp%mod);
    			while(q[pos].y==j && q[pos].x==i) Ans[q[pos].id]=g[now][j], ++pos;
    		}
    		while(q[pos].y==i && q[pos].x==i) Ans[q[pos].id]=g[now][i], ++pos;
    
    		las=now, now^=1;
    	}
    	for(int i=1; i<=T; ++i) printf("%d
    ",Ans[i]);
    }
    
    int main()
    {
    	freopen("permutation.in","r",stdin);
    	freopen("permutation.out","w",stdout);
    
    	T=read();
    	int mx=0;
    	for(int i=1; i<=T; ++i) mx=std::max(mx,q[i].x=read()),q[i].y=read(),q[i].id=i;
    
    	if(mx<=1500) {Violence(); return 0;}
    
    	std::sort(q+1,q+1+T);
    	Get_Ans(mx);
    
    	fclose(stdin);fclose(stdout);
    	return 0;
    }
    
  • 相关阅读:
    前向传播与反向传播
    卷积运算
    使用GUI工具Portainer.io管控Docker容器
    NextCloud: 打造自己的网盘
    金融危机和经济危机有什么不同
    【转载】Windows环境的Workflow神器:AutoHotkey
    Lua常用模块
    Lua基本语法
    区分 IaaS、SaaS 和 PaaS
    【笔记】流畅的Python
  • 原文地址:https://www.cnblogs.com/SovietPower/p/8708186.html
Copyright © 2011-2022 走看看